### 5.2 Definite Integrals

While the last section discussed area, the algebraic constructionit contained is universal.
Definition. Suppose that $f$ is a function defined on an interval $[a, b]$. Let $n$ be a positive integer, define $\Delta x=\frac{b-a}{n}$, and let

$$
x_{i}=a+i \Delta x=a+\frac{b-a}{n} i, \quad \text { for each } \quad i=0,1, \ldots, n
$$

Choose sample points $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$. A Riemann Sum is any expression of the form

$$
\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

We say that the function $f$ is Riemann Integrable on $[a, b]$ if

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

converges to the same value for every choice of sample points. In such a case the definite integral of $f$ from a to $b$ is ${ }^{1}$

$$
\int_{a}^{b} f(x) \mathrm{d} x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

The integral sign $\int$ is a stylized $S$ to remind you of the word " $\Sigma \mathrm{um}$. ."


The picture shows a choice of seven sample points. The sum of the (net) areas of the rectangles is a Riemann sum: if a rectangle is beneath the $x$-axis, then its area counts negatively.

Theorem. If $f$ is continuous on $[a, b]$, or has only a finite number of jump discontinuities, then $f$ is Riemann integrable on $[a, b]$.

[^0]
## Net area under a curve

If $f(x) \geq 0$, then $\int_{a}^{b} f(x) \mathrm{d} x=$ area under curve $y=f(x)$.
If $f(x)<0$, then $\int_{a}^{b} f(x) \mathrm{d} x<0$ is negative the area between the curve and the $x$-axis
In general $\int_{a}^{b} f(x) \mathrm{d} x=$ difference between the areas above and below the $x$-axis

$$
\begin{gathered}
\int_{a}^{b} f(x) \mathrm{d} x=A_{+}-A_{-} \\
y=x^{2}-2 x
\end{gathered}
$$




## Examples

1. $\int_{0}^{3} \sqrt{9-x^{2}} \mathrm{~d} x$ represents the area of quarter circle of radius 3 , hence

$$
\int_{0}^{3} \sqrt{9-x^{2}} \mathrm{~d} x=\frac{1}{4} \pi \cdot 3^{2}=\frac{9}{4} \pi
$$

2. If $f(x)=\left\{\begin{array}{ll}x & x<2 \\ 5-x & x \geq 2\end{array}\right.$ then the integral $\int_{-1}^{4} f(x) \mathrm{d} x$ can be computed by summing/subtacting the areas shown below:

$$
\int_{-1}^{4} f(x) \mathrm{d} x=A_{1}^{+}+A_{2}^{+}-A^{-}=2+4-\frac{1}{2}=\frac{11}{2}
$$




## The Midpoint Rule

For approximations, it is common to take sample points $x_{i}^{*}=\frac{1}{2}\left(x_{i-1}+x_{i}\right)$.

## Examples

1. Using the midpoint rule to estimate $\int_{0}^{1} x^{2} \mathrm{~d} x$ with 2 sample points yields

$$
\Delta x=\frac{1}{2}, \quad x_{0}=0, \quad x_{1}=\frac{1}{2}, \quad x_{2}=1
$$

and sample points $x_{1}^{*}=\frac{1}{4}$ and $x_{2}^{*}=\frac{3}{4}$. It follows that

$$
\int_{0}^{1} x^{2} \mathrm{~d} x \approx\left[\left(\frac{1}{4}\right)^{2}+\left(\frac{3}{4}\right)^{2}\right] \frac{1}{2}=\frac{5}{16}
$$

Given that the exact value for the integral is $\frac{1}{3}$, this is a very good approximation for very little work.
2. Use the midpoint rule with $n=4$ to estimate $\int_{3}^{5} x^{-3} \sin x \mathrm{~d} x$.

Here $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}=\{3,3.5,4,4.5,5\}$ with $\Delta x=0.5$, so

$$
x_{1}^{*}=3.25, \quad x_{2}^{*}=3.75, \quad x_{3}^{*}=4.25, \quad x_{4}^{*}=4.75
$$

Hence

$$
\begin{aligned}
\int_{3}^{5} & x^{-3} \sin x \mathrm{~d} x \approx \sum_{i=1}^{4} f\left(x_{i}^{*}\right) \Delta x \\
& =\frac{1}{2}\left(\frac{\sin (3.25)}{3.25^{3}}+\frac{\sin (3.75)}{3.75^{3}}+\frac{\sin (4.25)}{4.25^{3}}+\frac{\sin (4.75)}{4.75^{3}}\right) \\
& =-0.01749 \text { to } 5 \text { d.p. }
\end{aligned}
$$

## General properties of Integrals

Switching $b \leftrightarrow a$ changes the sign of $\Delta x=\frac{b-a}{n}$. Therefore

$$
\int_{b}^{a} f(x) \mathrm{d} x=-\int_{a}^{b} f(x) \mathrm{d} x
$$

In particular $\int_{a}^{a} f(x) \mathrm{d} x=0$.
The following results are easy to confirm by drawing pictures. Thunk about heights of rectangles, and areas under curves.

Theorem. If $f, g$ are integrable on $[a, b]$ and $c$ is constant, then

1. $\int_{a}^{b} c \mathrm{~d} x=c(b-a)$ - area of rectangle height $c$, base $b-a$
2. $\int_{a}^{b} f(x) \pm g(x) \mathrm{d} x=\int_{a}^{b} f(x) \mathrm{d} x \pm \int_{a}^{b} g(x) \mathrm{d} x$
3. $\int_{a}^{b} c f(x) \mathrm{d} x=c \int_{a}^{b} f(x) \mathrm{d} x$
4. $\int_{a}^{c} f(x) \mathrm{d} x+\int_{c}^{b} f(x) \mathrm{d} x=\int_{a}^{b} f(x) \mathrm{d} x$
5. If $f(x) \geq 0$ for all $x \in[a, b]$ then

$$
\int_{a}^{b} f(x) \mathrm{d} x \geq 0
$$

6. If $f(x) \geq g(x)$ for all $x \in[a, b]$ then

$$
\int_{a}^{b} f(x) \mathrm{d} x \geq \int_{a}^{b} g(x) \mathrm{d} x
$$

7. If $m \leq f(x) \leq M$ on $[a, b]$ then

$$
m(b-a) \leq \int_{a}^{b} f(x) \mathrm{d} x \leq M(b-a)
$$

4. 


6.

7.


## Suggested problems

1. Suppose you are given the following:

$$
\int_{0}^{3} f(x) \mathrm{d} x=4, \quad \int_{5}^{3} f(x) \mathrm{d} x=-2, \quad \int_{0}^{5} g(x) \mathrm{d} x=-5 .
$$

Evaluate $\int_{0}^{5} 2 f(x)-3 g(x) \mathrm{d} x$.
2. A heater is switched on for 8 minutes. At time $t$ minutes, the heater is using $E(t)=200-\frac{200}{1+t}$ kilojoules per minute. Use the midpoint rule with 4 subintervals to estimate the total energy consumed by the heater.
3. (Very hard!) Let $f$ be the following function:

$$
f(x)= \begin{cases}x & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational } .\end{cases}
$$

I.e. $f(3)=3$, but $f(\sqrt{2})=0$.
(a) Consider the following Riemann sum for $f$ on the interval $[0,1]$.

$$
\sum_{i=1}^{n} f\left(\frac{i}{n}\right) \cdot \frac{1}{n} .
$$

Evaluate this sum (note that $\frac{i}{n}$ is a rational number).
(b) A property of the real numbers is that between any two rational numbers $p<q$ there exists an irrational number $\xi$. Show that there exists a Riemann sum for $f$ on $[0,1]$ with $n$ subintervals for which all of the sample points $x_{i}^{*}$ are irrational. What is the value of this Riemann sum?
(c) Comparing your answers to parts (a) and (b), prove that $f$ is not Riemann integrable on the interval $[0,1]$.


[^0]:    ${ }^{1}$ Since the limit is the same for all sample points $x_{i}^{*}$ we might as well take right endpoints $x_{i}^{*}=x_{i}$

