
5.3 The Fundamental Theorem of Calculus

The Fundamental Theorem combines:

Anti-differentiation Find F(x) such that F′(x) = f (x)

(Definite) Integration Find area under curve y = f (x)

It is termed fundamental because it provides the link between the two branches of calculus: differen-
tiation and integration.

We first need to think of integrals as functions. We fix the lower limit of a definite integral to be a
constant a and let the upper limit be variable. Thus if f is a function defined on an interval containing
a and x, then

g(x) =
∫ x

a
f (t)dt

is a function of x. The function g returns the net area under the curve y = f (x) from a up to x.
Recall the conventions from the previous section for how to understand values and net area: in
particular, net area is negative if either

• x < a, or

• f (t) < 0

The animation should convince you
that we can form such a function g:
the lower graph returns the net area
under the curve y = 4x− x2 from 1
up to x. Some points of interest:

• g(1) = 0: no area!

• g(4) > 0

• g(x) decreases when x > 4
since the net area for x > 4 is
negative.

• g(0) < 0 since 0 < 1: the
area under the curve is being
measured backwards. Indeed
g(0) = −

∫ 1
0 f (t)dt

The Fundamental Theorem of Calculus can be seen in the picture; try sketching the derivative/slope
of the lower graph, you should obtain the upper. . .
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Example All manner of useful functions can be
defined in this way. For example, the error function,
of critical importance to probability, is defined by
the integral

erf(x) =
2√
π

∫ x

0
e−t2

dt, −∞ < x < ∞

The error function returns the net area under the
curve y = 2√

π
e−x2

between 0 and x.
There is no way to express the error function in
terms of the ‘nice’ functions you’ve thusfar met. It
has to be defined using an integral (or something
worse such as power series).

The first part of the Fundamental Theorem tells us how to differentiate such functions.

Theorem (FTC, part 1). Suppose that f is continuous on [a, b]. Then F(x) :=
∫ x

a f (t)dt is continuous on
[a, b], differentiable on (a, b), and its dertivative1 is F′(x) = f (x).

We often write d
dx

∫ x
a f (t)dt = f (x). In essense, FTC part 1 says that if you integrate then differenti-

ate, you return to what you started with.

Examples

1. The error function is differentiable for all real numbers x, and

d
dx

erf(x) =
2√
π

d
dx

∫ x

0
e−t2

dt =
2√
π

e−x2

2.
d

dx

∫ x

3
cos(t2)dt = cos(x2)

3. Switching limits: If the variable limit is at the bottom of the integral, we need to switch the
limits, thus introducing a minus sign, before applying the Theorem. For example

d
dx

∫ 2

x
esin t dt = − d

dx

∫ x

2
esin t dt = −esin x

4. Combining with the chain rule: If the variable limit is more complicated, then we need to use
the chain rule. For example if we let

F(x) =
∫ x

3
(t3 − 1)5 dt

then

d
dx

∫ e2x

3
(t3 − 1)5 dt =

d
dx

F(e2x) = 2e2xF′(e2x) (chain rule)

= 2e2x ((e2x)3 − 1
)5

= 2e2x(e6x − 1)5 (since F′(x) = (x3 − 1)5)
1Also on the open interval (a, b).
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5. Separating. If both the lower and upper limits are variables, then we can separate into two
integrals, switch the limits on one integral, and perhaps use the chain rule to finish things off.
For example:

d
dx

∫ x3

x2
sin t dt =

d
dx

∫ x3

0
sin t dt +

d
dx

∫ 0

x2
sin t dt (split into two integrals)

=
d

dx

∫ x3

0
sin t dt− d

dx

∫ x2

0
sin t dt (switch limits on second integral)

= 3x2 sin(x3)− 2x sin(x2) (apply FTC with chain rule)

The choice of zero as the splitting point in the first line was irrelevant. We could have chosen
any constant in the domain of sin t.

The Theorem, Part 2 The second half of the fundamental theorem is more widely used. In essence,
it says that if you differentiate and then integrate, you get back (almost) to where you started.

Theorem (FTC, part 2). Suppose that f is continuous on [a, b] and that F is any antiderivative of f . Then

∫ b

a
f (x)dx = F(b)− F(a)

There are two alternative notations for evaluating the anti-deriative:

F(b)− F(a) = F(x)
∣∣b

a = [F(x)]ba

Examples

1.
∫ 3

1 4x− x2 dx = 2x2 − 1
3 x3
∣∣∣
3

1
=
(

2 · 32 − 33

3

)
−
(
2− 1

3

)
= 22

3

2.
∫ 6

3 1− x−2 dx = x + x−1
∣∣6
3 = (6 + 1

6 )− (3 + 1
3 ) = 2 5

6 = 17
6

3. A car has velocity v(t) = 60(1− e−240t) mph after t hours. How far does it travel in the first
minute?

V(t) = 60t + 60
240 e−240t = 60t + 1

4 e−240t is an anti-derivative of v(t), so the distance travelled is

∫ 1
60

0
v(t)dt =

[
60t +

1
4

e−240t
] 1

60

0

=
1
4
(3 + e−4) ≈ 0.755 miles

Suggested Problems

1. Compute the following:

(a)
d

dx

∫ x3

2
cos(3

√
t)dt.
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(b)
d
dz

∫ 3
√

z

2z
esin u du.

(c)
∫ 3

1
e2x + x2 dx.

(d)
∫ 2π

−π
cos2t dt.

2. Use the FTC part 1 to differentiate and hence find all the critical points of the function

y(x) =
∫ x

0

t(t + 1)
t4 + 1

dt

Now use the first derivative test from calc 1 to identify the type of each critical point.

3. In this question the function u(t) =

{
1 if t ≥ 0,
0 if t < 0,

is the unit step function.

(a) Sketch the function f (x) = xu(x) for −1 ≤ x ≤ 1.
(b) Show that

∫ x

−1
tu(t)dt =

{
1
2 x2 if x ≥ 0,
0 if x < 0.

(c) Is
d

dx

∫ x

−1
tu(t)dt = xu(x) for all x?

(d) Repeat parts (a-c) for g(x) = exu(x). What is different?

Advanced/Non-examinable: Proofs, and why we need the continuity assumptions

The statements of the two parts of the Fundamental Theorem both insist that f is continuous. To
see why this is necessary we first consider the proofs. That of part 1 relies on the Extreme Value
Theorem2 which only applies to continuous functions. Part 2 is a corollary of part 1 and so also relies
on the continuity assumption.

Proof of FTC, part 1. Let x ∈ (a, b) and let h > 0 be small so that x + h ∈ [a, b]. Since f is continuous,
the Extreme Value Theorem says that it is bounded on the interval [x, x + h]. It follows that there
exist values

mx(h) = min{ f (t) : t ∈ [x, x + h]}, Mx(h) = max{ f (t) : t ∈ [x, x + h]}

It follows that

F(x + h)− F(x) =
∫ x+h

x
f (t)dt




≤ hMx(h)

≥ hmx(h)

Since h > 0 we see that

f(
t)

t
a bx x + h

Mx(h)

mx(h)

2Covered in the discussion of continuity in differential calculus.

4



mx(h) ≤
F(x + h)− F(x)

h
=

1
h

∫ x+h

x
f (t)dt ≤ Mx(h)

However f is continuous, and so therefore are the functions mx(h) and Mx(h) (as functions of h).
Clearly

lim
h→0+

mx(h) = f (x) = lim
h→0+

Mx(h)

whence the Squeeze Theorem tells us that

lim
h→0+

1
h

∫ x+h

x
f (t)dt = f (x)

Repeating the calculation for h < 0 gives the Theorem.

Proof of FTC, part 2. By FTC part 1, F(x) :=
∫ x

a f (t)dt is an antiderivative of f (x). Clearly

F(b)− F(a) =
∫ b

a
f (t)dt =

∫ b

a
f (x)dx

The Mean Value Theorem says that any other anti-derivative of f on the interval [a, b] differs from F
by a constant: i.e. G(x) = F(x) + c. It follows that

G(b)− G(a) = (F(b) + c)− (F(a) + c) = F(b)− F(a)

is independent of the choice of anti-derivative.

Just because the proof uses the continuity of f doesn’t guarantee that we need it. To see that
we do, we should investigate what happens when we try to apply the Fundamental Theorem to a
discontinuous function. Try answering the questions below. The solutions are with those for the
suggested problems.

1. Sketch the function f (x) =

{
1− x x ≤ 1
x x > 1

2. Evaluate and sketch the graph of F(x) :=
∫ x

0
f (t)dt for 0 ≤ x ≤ 2.

3. Calculate F′(x). Is it equal to f (x)? Explain.

4. Evaluate
∫ 2

0
f (x)dx.

5. Show that G(x) =

{
x− 1

2 x2 x < 1
1 + 1

2 x2 x > 1
is an anti-derivative of f (x) whenever x 6= 1.

6. What is G(2)− G(0)? Explain.
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