6.5 The Average Value of a Function

Recall the usual meaning of average: if we have a collection of n values y_{1}, \ldots, y_{n}, then its average is

$$
y_{\mathrm{av}}=\frac{y_{1}+\cdots+y_{n}}{n}
$$

Now observe that a Riemann sum for a function f on an interval $[a, b]$ is simply the average value of the rectangle-heights $f\left(x_{i}^{*}\right)$, multiplied by the length of $[a, b]$:

$$
\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \cdot \frac{b-a}{n}=(b-a) \frac{f\left(x_{1}^{*}\right)+\cdots+f\left(x_{n}^{*}\right)}{n}
$$

This motivates us to define the notion of average for any integrable function.
Definition. The average value of a function f over $[a, b]$ is

$$
f_{\mathrm{av}}=\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x
$$

To visualize the average value, imaging a bulldozer flattening out all the peaks of a function and pushing the debris into its troughs. The result is a rectangle with height f_{av}. Otherwise said, the blue and gray areas are identical.

Note that if f is a constant function $f(x)=c$, then the average value is simply

$$
f_{\mathrm{av}}=\frac{1}{b-a} \int_{a}^{b} c \mathrm{~d} x=\frac{1}{b-a}(b-a) c=c
$$

Example Find the average value of $f(x)=x+5-\frac{10}{(2+x)^{2}}$ on the interval $[-1,4]$.

$$
\begin{array}{rl}
f_{\mathrm{av}} & =\frac{1}{4-(-1)} \int_{-1}^{4} x+5-10(2+x)^{-2} \mathrm{~d} x=\left.\frac{1}{5}\left(\frac{1}{2} x^{2}+5 x+10(x+2)^{-1}\right)\right|_{-1} ^{4} \\
& =\frac{1}{5}\left(\frac{1}{2}(16-1)+5(4+1)+10\left(\frac{1}{6}-1\right)\right)=\frac{29}{6} \\
y & 9-1
\end{array}
$$

The Mean Value Theorem for Integrals

It seems obvious from the pictures that if a function is continuous on an interval, then its value must at some point equal its average. Consider the following real-world examples.

1. There will always be some time when your velocity equals your velocity speed for a journey.
2. At some point during the day, the temperature will equal the average temperature over that day.

This is indeed a Theorem:
Theorem (Mean Value Theorem for Integrals). If f is continuous on $[a, b]$, then there exists a number c in (a, b) for which

$$
f(c)=f_{a v}=\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x
$$

Proof. Let $F(x)=\int_{a}^{x} f(t) \mathrm{d} t$, then F is continuous on $[a, b]$ and differentiable on (a, b) by the Fundamental Theorem of Calculus. Applying the Meam Value Theorem to F, we obtain $c \in(a, b)$ for which

$$
F^{\prime}(c)=\frac{F(b)-F(a)}{b-a}=\frac{(b-a) f_{\mathrm{av}}-0}{b-a}=f_{\mathrm{av}}
$$

However, by FTC part 1, we have $F^{\prime}(c)=f(c)$. Hence result.

Example If $f(x)=x^{2}-3 x+2$, find all the values c for which $f(c)=f_{\text {av }}$ on $[0,4]$

$$
f_{\mathrm{av}}=\frac{1}{4-0} \int_{0}^{4} x^{2}-3 x+2 \mathrm{~d} x=\left.\frac{1}{4}\left(\frac{1}{3} x^{3}-\frac{3}{2} x^{2}+2 x\right)\right|_{0} ^{4}=\frac{4}{3}
$$

We therefore solve

$$
f(c)=\frac{4}{3} \Longleftrightarrow c^{2}-3 c+\frac{2}{3}=0 \Longleftrightarrow c=\frac{3 \pm \sqrt{19 / 3}}{2} \approx 2.758,0.242
$$

Suggested problems

1. What is the average height of the curve $y=\sqrt{4-x^{2}},-2 \leq x \leq 2$, from the x-axis?
2. Let $f(x)=3 x^{2}-2 x+7$ on the interval $[-1,1]$. Find all values of x for which $f(x)=f_{\text {av }}$.
3. Suppose you walk around a semicircle of radius 2 km at a constant speed ${ }^{1}$ What is your average distance from the base of the semicircle?
[^0]
[^0]: ${ }^{1}$ This is not the same problem as question $1 \ldots$

