7.2 Trigonometric Integrals

The three identities $\sin ^{2} x+\cos ^{2} x=1, \cos ^{2} x=\frac{1}{2}(\cos 2 x+1)$ and $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$ can be used to integrate expressions involving powers of Sine and Cosine. The basic idea is to use an identity to put your integral in a form where one of the substituions $u=\sin x$ or $u=\cos x$ may be applied.

Examples

1. To compute $\int \sin ^{3} x \mathrm{~d} x$, we first apply the identity $\sin ^{2} x+\cos ^{2} x=1$ to get

$$
\int \sin ^{3} x \mathrm{~d} x=\int \sin x\left(1-\cos ^{2} x\right) \mathrm{d} x
$$

This is now set up perfectly for the substitution $u=\cos x \Longrightarrow \mathrm{~d} u=-\sin x \mathrm{~d} x$:

$$
\begin{aligned}
\int \sin ^{3} x \mathrm{~d} x & =\int\left(1-u^{2}\right)(-\mathrm{d} u)=\int u^{2}-1 \mathrm{~d} u \\
& =\frac{1}{3} u^{3}-u+c=\frac{1}{3} \cos ^{3} x-\cos x+c
\end{aligned}
$$

2. The same trick works in the following:

$$
\begin{aligned}
\int \sin ^{3} x \cos ^{2} x \mathrm{~d} x & =\int \sin x \sin ^{2} x \cos ^{2} x \mathrm{~d} x=\int \sin x\left(1-\cos ^{2} x\right) \cos ^{2} x \mathrm{~d} x \\
& =\int \sin x\left(\cos ^{2} x-\cos ^{4} x\right) \mathrm{d} x \\
& =\int\left(u^{2}-u^{4}\right)(-\mathrm{d} u) \\
& =-\frac{1}{3} u^{3}+\frac{1}{5} u^{5}+c=\frac{1}{5} \cos ^{5} x-\frac{1}{3} \cos ^{3} x+c
\end{aligned} \quad \quad \text { (substitute } u=\cos x \text {) } \quad \text {) }
$$

3. With an even power, a double-angle formula is more useful.

$$
\int \sin ^{2} x \mathrm{~d} x=\int \frac{1}{2}(1-\cos 2 x) \mathrm{d} x=\frac{1}{2} x+\frac{1}{4} \sin 2 x+c
$$

General Strategies $\int \sin ^{m} x \cos ^{n} x \mathrm{~d} x$

1. If $n=2 k+1$ is odd, replace $\cos ^{2 k} x=\left(1-\sin ^{2} x\right)^{k}$, then

$$
\int \sin ^{m} x \cos ^{n} x \mathrm{~d} x=\int \sin ^{m} x\left(1-\sin ^{2} x\right)^{k} \cos x \mathrm{~d} x
$$

Now substitute $u=\sin x \Longrightarrow \mathrm{~d} u=\cos x \mathrm{~d} x$

$$
\int \sin ^{m} x \cos ^{n} x \mathrm{~d} x=\int u^{m}\left(1-u^{2}\right)^{k} \mathrm{~d} u
$$

This is a polynomial in u, which can be integrated after multiplying out.
2. If m is odd, repeat (1) with the roles of \cos and \sin reversed. Examples 1. and 2. above are of this form.
3. If $m=2 k, n=2 l$ are both even, write $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$ and $\cos ^{2} x=\frac{1}{2}(1+\cos 2 x)$ to obtain

$$
\int \sin ^{m} x \cos ^{n} x \mathrm{~d} x=\frac{1}{2^{k+l}} \int(1-\cos 2 x)^{k}(1+\cos 2 x)^{l} \mathrm{~d} x
$$

which yields integrals of powers of $\cos 2 x$. If these powers are odd, then we use the strategies above, if they are even we can repeat to find integrals in terms of $\cos 4 x$, etc.
An alternative approach might utilise the identity $\sin x \cos x=\frac{1}{2} \sin 2 x$.

Examples

1. To compute $\int \sin ^{4} x \mathrm{~d} x$ we have to use two identities: $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$ and then $\cos ^{2} 2 x=$ $\frac{1}{2}(1+\cos 4 x)$.

$$
\begin{array}{rlr}
\int \sin ^{4} x \mathrm{~d} x & =\int\left(\sin ^{2} x\right)^{2} \mathrm{~d} x=\frac{1}{4} \int(1-\cos 2 x)^{2} \mathrm{~d} x \\
& =\frac{1}{4} \int 1-2 \cos 2 x+\cos ^{2} 2 x \mathrm{~d} x \\
& =\frac{1}{4} x-\frac{1}{4} \sin 2 x+\frac{1}{4} \int \cos ^{2} 2 x \mathrm{~d} x & \text { (integrate the bits you can...) } \\
& =\frac{1}{4} x-\frac{1}{4} \sin 2 x+\frac{1}{8} \int 1+\cos 4 x \mathrm{~d} x \\
& =\frac{3}{8} x-\frac{1}{4} \sin 2 x+\frac{1}{32} \sin 4 x+c
\end{array} \quad \text { (... use another identity) }
$$

2. If both powers of sine and cosine are odd, you may use either of the first two strategies:

$$
\begin{aligned}
\int \sin ^{5} x \cos ^{3} x \mathrm{~d} x & =\int \cos x \sin ^{5} x\left(1-\sin ^{2} x\right) \mathrm{d} x=\int \cos x\left(\sin ^{5} x-\sin ^{7} x\right) \mathrm{d} x \\
& \left.=\int u^{5}-u^{7} \mathrm{~d} u \quad \text { (substitute } u=\sin x\right) \\
& =\frac{1}{6} \sin ^{6} x-\frac{1}{8} \sin ^{8} x+c_{1}
\end{aligned}
$$

Alternatively

$$
\begin{aligned}
\int \sin ^{5} x \cos ^{3} x \mathrm{~d} x & =\int \sin x\left(1-\cos ^{2} x\right)^{2} \cos ^{3} x \mathrm{~d} x=\int \sin x\left(\cos ^{3} x-2 \cos ^{5} x+\cos ^{7} x\right) \mathrm{d} x \\
& =\int u^{3}-2 u^{5}+u^{7}(-\mathrm{d} u) \quad(\text { let } u=\cos x) \\
& =-\frac{1}{4} \cos ^{4} x+\frac{1}{3} \cos ^{6} x-\frac{1}{8} \cos ^{8} x+c_{2}
\end{aligned}
$$

Since both these answers are correct, we must have discovered a (nasty) trig identity! Indeed by evaluating both at $x=0$ we can quickly see that $c_{1}=c_{2}-\frac{1}{24}$ and the result is the evil-looking identity

$$
4 \sin ^{6} x-3 \sin ^{8} x=1-6 \cos ^{4} x+8 \cos ^{6} x-3 \cos ^{8} x
$$

3. This time we have a pair of even power. There are again a couple of approaches.

$$
\begin{aligned}
\int_{0}^{\pi} \sin ^{2} x \cos ^{4} x \mathrm{~d} x & =\frac{1}{8} \int_{0}^{\pi}(1-\cos 2 x)(1+\cos 2 x)^{2} \mathrm{~d} x \\
& =\frac{1}{8} \int_{0}^{\pi} 1+\cos 2 x-\cos ^{2} 2 x-\cos ^{3} 2 x \mathrm{~d} x \\
& =\frac{1}{8}\left(\pi-\int_{0}^{\pi} \frac{1}{2}(1+\cos 4 x)+\left(1-\sin ^{2} 2 x\right) \cos 2 x \mathrm{~d} x\right) \\
& =\frac{1}{8}\left(\frac{\pi}{2}+\int_{0}^{\pi} \sin ^{2} 2 x \cos 2 x \mathrm{~d} x\right) \\
& =\frac{1}{8}\left(\frac{\pi}{2}+\left.\frac{1}{6} \sin ^{3} 2 x\right|_{0} ^{\pi}\right)=\frac{\pi}{16}
\end{aligned}
$$

or

$$
\begin{aligned}
\int_{0}^{\pi} \sin ^{2} x \cos ^{4} x \mathrm{~d} x & =\int_{0}^{\pi}(\sin x \cos x)^{2} \cos ^{2} x \mathrm{~d} x=\frac{1}{8} \int_{0}^{\pi} \sin ^{2} 2 x(1+\cos 2 x) \mathrm{d} x \\
& =\frac{1}{8} \int_{0}^{\pi} \sin ^{2} 2 x \mathrm{~d} x=\frac{1}{16} \int_{0}^{\pi}(1-\cos 4 x) \mathrm{d} x=\frac{\pi}{16}
\end{aligned}
$$

It is rarely obvious what strategy is going to be best, so don't be surprised if someone finds a faster way to do a problem.

General Strategies for $\int \tan ^{m} x \sec ^{n} x \mathrm{~d} x$

The next type of trigonometric integrals have the form $\int \tan ^{m} x \sec ^{n} x \mathrm{~d} x$. These are similar to, but trickier than, the $\int \sin ^{m} x \cos ^{n} x \mathrm{~d} x$ integrals. The overall goal is exactly the same: use a trig identity to transform the integrand in such a way that an easy substitution will finish things off. The difficulty is that we have fewer easy identities involving tangent and secant to play with.

1. If $n=2 k$ is even take out a factor of $\sec ^{2} x$. Replace the remaining powers of secant using the identity $\sec ^{2} x=1+\tan ^{2}!x$, that is

$$
\sec ^{2 k-2} x=\left(1+\tan ^{2} x\right)^{k-1}
$$

Our integral is now set up for the substitution $u=\tan x$. The idea is that we have extracted $\sec ^{2} x=\frac{\mathrm{d} u}{\mathrm{~d} x}$ and left everythin else in terms of $u=\tan x$:

$$
\begin{aligned}
\int \tan ^{m} x \sec ^{n} x \mathrm{~d} x & =\int \tan ^{m} x\left(1+\tan ^{2} x\right)^{k-1} \sec ^{2} x \mathrm{~d} x \\
& =\int u^{m}\left(1+u^{2}\right)^{k-1} \mathrm{~d} u
\end{aligned}
$$

which can be integrated after multiplying out.
2. If $m=2 k+1$ is odd and $n \geq 1$, save a factor of $\sec x \tan x$ and use the identity $\tan ^{2} x=\sec ^{2} x-1$ to convert all the tangents to secants. We can then substitute $u=\sec x$, then $\mathrm{d} u=\sec x \tan x \mathrm{~d} x$ eliminates the saved expression.

$$
\begin{aligned}
\int \tan ^{m} x \sec ^{n} x \mathrm{~d} x & =\int\left(\sec ^{2} x-1\right)^{k} \sec ^{n-1} x \sec x \tan x \mathrm{~d} x \\
& =\int\left(u^{2}-1\right)^{k} u^{n-1} \mathrm{~d} u
\end{aligned}
$$

which can be integrated after multiplying out.

In cases other than the above we may be stuck: we can sometimes appeal to the anti-derivatives

$$
\int \tan x \mathrm{~d} x=\ln |\sec x|+c, \quad \int \sec x \mathrm{~d} x=\ln |\sec x+\tan x|+c
$$

but these may be insufficient to solve the problem. Integration by parts or some other clever substitution may be necessary.

Examples

1. $\int \tan ^{2} x \sec ^{4} x \mathrm{~d} x=\int \tan ^{2} x\left(1+\tan ^{2} x\right) \sec ^{2} x \mathrm{~d} x$

$$
\begin{aligned}
& \left.=\int u^{2}\left(1+u^{2}\right) \mathrm{d} u \quad \text { substitute } u=\tan x\right) \\
& =\frac{1}{3} u^{3}+\frac{1}{5} u^{5}+c=\frac{1}{3} \tan ^{3} x+\frac{1}{5} \tan ^{5} x+c
\end{aligned}
$$

2. $\int \tan ^{5} x \sec ^{3} x \mathrm{~d} x=\int \tan ^{4} x \sec ^{2} x \sec x \tan x \mathrm{~d} x=\int\left(\sec ^{2} x-1\right)^{2} \sec ^{2} x \sec x \tan x \mathrm{~d} x$

$$
\begin{aligned}
& =\int\left(u^{2}-1\right)^{2} u^{2} \mathrm{~d} u \quad \text { (substitute } u=\sec x \text {) } \\
& =\int u^{6}-2 u^{4}+u^{2} \mathrm{~d} u=\frac{1}{7} u^{7}-\frac{2}{5} u^{5}+\frac{1}{3} u^{3}+c \\
& =\frac{1}{7} \sec ^{7} x-\frac{2}{5} \sec ^{5} x+\frac{1}{3} \sec ^{3} x+c
\end{aligned}
$$

3. $\int \tan ^{2} x \sec x \mathrm{~d} x=\int\left(\sec ^{2} x-1\right) \sec x \mathrm{~d} x=\int \sec ^{3} x-\sec x \mathrm{~d} x$

$$
=\int \sec ^{3} x \mathrm{~d} x-\ln |\sec x+\tan x|
$$

$\int \sec ^{3} x \mathrm{~d} x$ can be attacked by parts:

$$
\begin{aligned}
& \begin{array}{l}
\left.\begin{array}{l}
u=\sec x \\
\mathrm{~d} v=\sec ^{2} x \mathrm{~d} x
\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}
\mathrm{d} u=\sec x \tan x \mathrm{~d} x \\
v=\tan x
\end{array}\right. \\
\\
\quad \int \tan ^{2} x \sec x \mathrm{~d} x=\sec x \tan x-\int \sec x \tan ^{2} x \mathrm{~d} x-\ln |\sec x+\tan x| \\
\Longrightarrow \int \tan ^{2} x \sec x \mathrm{~d} x=\frac{1}{2}(\sec x \tan x-\ln |\sec x+\tan x|)+c
\end{array} .
\end{aligned}
$$

Other Trigonometric Integrals

- Other trigonometric integrals will not tend to have general strategies: creativity is necessary!
- No other types of trigonometric integral are examinable in this class!

Suggested problems

1. Evaluate the integrals:
(a) $\int \sin ^{3} x \cos ^{2} x \mathrm{~d} x$
(b) $\int \cos ^{4}(2 x) \mathrm{d} x$
2. Evaluate the integrals:
(a) $\int \sec ^{4} x \tan ^{3} x \mathrm{~d} x$
(b) $\int_{0}^{\pi / 3} \sec ^{3} x \tan ^{3} x \mathrm{~d} x$
3. The region R_{1} is bounded by the graph of $y=\tan x$ and the x-axis on the interval $[0, \pi / 3]$. The region R_{2} is bounded by the graph of $y=\sec x$ and the x-axis on the interval $[0, \pi / 6]$. Which region has the greater area?
