
7.3 Trigonometric Substitution

These are useful for integrating square-roots of quadratic expressions. That is, if your intergand con-
tains any terms of the form

√
ax2 + bx + c, where a, b, c are constant.

We have already seen an example using the substitution x = sin θ:∫ 1√
1− x2

dx =
∫ 1√

1− sin2 θ
cos θ dθ =

∫ cos θ

cos θ
dθ =

∫
dθ = θ + c = sin−1 x + c

General Strategies

There are three primary types of expression. Each can be simplified by a trigonometric substitution.

1. If the integrand contains
√

a2 − x2 let x = a sin θ where −π
2 ≤ θ ≤ π

2 , then√
a2 − x2 =

√
a2 − a2 sin2 θ = a cos θ and dx = a cos θ dθ

We now have an integral containing sines and cosines, which is (hopefully) amenable to the
methods of the last section.

2. If the integrand contains
√

a2 + x2 let x = a tan θ where −π
2 ≤ θ ≤ π

2 , then√
a2 + x2 =

√
a2 + a2 tan2 θ = a sec θ and dx = a sec2 θ dθ

We now have an integral containing secants and tangents.

3. If the integrand contains
√

x2 − a2 let x = a sec θ where 0 ≤ θ < π
2 or π ≤ θ < 3π

2 , then√
x2 − a2 =

√
a2 sec2 θ − a2 = a tan θ and dx = a sec θ tan θ dθ

We again have an integral containing secants and tangents.

Examples

1. For our first example of the method, we check an integral that may be easily dispatched via the
susbtitution u = 4− x2.∫

x
√

4− x2 dx =
∫ √

u(− 1
2 du) = −1

3
u3/2 + c = −1

3
(4− x2)3/2 + c

Instead we apply the methods of this section: let x = 2 sin θ, then dx = 2 cos θ dθ, and∫
x
√

4− x2 dx =
∫

2 sin θ
√

4 + 4 sin2θ · 2 cos θ dθ = 8
∫

sin θ · cos2θ dθ

= −8
3

cos3θ + c (substitute u = cos θ explicitly if you need to)

= −8
3

(
cos(sin−1 x

2 )
)3

+ c
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This answer is revolting! How can we simplify the cos(sin−1) expression? Since trigonometric
functions are defined using right-angled triangles, we draw one with angle θ = sin−1 x

2 . This
says that

x
2
= sin θ =

opposite
hypotenuse

so we draw our triangle with opposite x and hy-
potenuse 2. We want

cos θ =
adjacent

hypotenuse

x = 2 sin θ

√
4− x2 = 2 cos θ

2

θ

which, after applying Pythagoras’ Theorem to calculate the length
√

4− x2 of the adjacent,
gives us our result:∫

x
√

4− x2 dx = −8
3

(√
4− x2

2

)3

+ c = −1
3
(4− x2)3/2 + c

as before.

2. This time we use x = 4 sin θ: then dx = 4 cos θ dθ, and∫ 1
(16− x2)3/2 dx =

∫ 1
(16− 16 sin2θ)3/2

· 4 cos θ dθ =
∫ 4 cos θ

163/2(cos2θ)3/2 dθ

=
1

16

∫
sec2 θ dθ =

1
16

tan θ + c =
x

16
√

16− x2
+ c

To finish things off we needed another triangle, drawn below.

x
4
= sin θ =

opposite
hypotenuse

so we draw our triangle with opposite x and hy-
potenuse 4. We want

tan θ =
opposite
adjacent

x = 4 sin θ

√
16− x2 = 4 cos θ

4

θ

3. For definite integrals, we can change the limits as we go, so no triangle pictures are necessary.
Here we let x =

√
2 sin θ then dx =

√
2 cos θ dθ. The limits become x = 0 ⇐⇒ θ = 0 and

x =
√

2 ⇐⇒ θ = π
2 , whence∫ √2

0
x3
√

2− x2 dx =
∫ π

2

0
2
√

2 sin3θ
√

2− 2 sin2θ ·
√

2 cos θ dθ

= 4
√

2
∫ π

2

0
sin3θ cos2θ dθ = 4

√
2
∫ π

2

0
(cos2θ − cos4θ) sin θ dθ

= 4
√

2
(
−1

3
cos3θ +

1
5

cos5θ

) ∣∣∣∣∣
π
2

0

=
8
√

2
15

Example could alternatively have been done via the substitution u = 2− x2: try it!

2



The Area of an Ellipse

An ellipse with semi-major axis a and semi-minor axis b has equation x2

a2 +
y2

b2 = 1. Its total area is four
times the area of the upper-right quadrant: this is the integral

A = 4
∫ a

0
b

√
1− x2

a2 dx =
4b
a

∫ a

0

√
a2 − x2 dx

which can be computed using the substitution x = a sin θ. Remember to change the limits. . .

A =
4b
a

∫ π/2

0

√
a2 − a2 sin2θ · a cos θ dθ

= 4ab
∫ π/2

0
cos2θ dθ

= 2ab
∫ π/2

0
1 + cos 2θ dθ = πab

y

x
a−a

b

−b

Examples with Secant and Tangent Substitutions

1. Let x = 3 sec θ to obtain dx = 3 sec θ tan θ dθ. Then∫ √x2 − 9
x

dx =
∫ √9 sec2θ − 9

3 sec θ
· 3 sec θ tan θ dθ

= 3
∫

tan2θ dθ = 3
∫

sec2θ − 1 dθ

= 3 tan θ − 3θ + c

=
√

x2 − 9− 3 sec−1 x
3
+ c

The last step requires a triangle.

x
3
= sec θ =

1
cos θ

=
hypotenuse

adjacent

so we draw our triangle with hypotenuse x and
adjacent 3. We want

tan θ =
opposite
adjacent

=

√
x2 − 9

3

√
x2 − 9

3

x

θ

2. This time we set x = 5 tan θ:∫ 1
x2
√

25 + x2
dx =

∫ 5 sec2 θ

25 tan2 θ · 5 sec θ
dθ =

1
25

∫ 1
tan2 θ cos θ

dθ =
1
25

∫ cos θ

sin2 θ
dθ

= − 1
25 sin θ

+ c = −
√

25 + x2

25x
+ c

Try drawing the required triangle yourself.

3



More general expressions
√

Q(x)

By completing the square and changing variables, any quadratic Q(x) may be transformed to one of
the standard forms.

Example By completing the square, 6x − x2 = 9− (x − 3)2 which, through the substitution u =
x− 3, yields∫ x√

6x− x2
dx =

∫ x√
9− (x− 3)2

dx =
∫ 3 + u√

9− u2
du = 3 sin−1 u

3
−
√

9− u2 + c

= 3 sin−1
(

x− 3
3

)
−
√

6x− x2 + c

Suggested problems

1. (a) Evaluate the integral
∫ √2

0

x2
√

4− x2
dx

(b) Evaluate
∫ x dx√

16 + 4x2
using a trigonometric substitution. What method would have been

easier?

2. Consider the function f (x) = (9 + x2)−1/2 on the interval [0, 4]

(a) Find the area under the curve y = f (x).

(b) Find the volume when the region under the curve is rotated around the x-axis.

(c) (Hard) Find the volume when the region under the curve is rotated around the y-axis.

3. Evaluate the integral
∫ x2 + 2x + 4√

x2 − 4x
dx, x > 4 (You may quote the integrals of sec θ and sec3 θ)
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