7.3 Trigonometric Substitution

These are useful for integrating square-roots of quadratic expressions. That is, if your intergand contains any terms of the form $\sqrt{a x^{2}+b x+c}$, where a, b, c are constant.

We have already seen an example using the substitution $x=\sin \theta$:

$$
\int \frac{1}{\sqrt{1-x^{2}}} \mathrm{~d} x=\int \frac{1}{\sqrt{1-\sin ^{2} \theta}} \cos \theta \mathrm{~d} \theta=\int \frac{\cos \theta}{\cos \theta} \mathrm{d} \theta=\int \mathrm{d} \theta=\theta+c=\sin ^{-1} x+c
$$

General Strategies

There are three primary types of expression. Each can be simplified by a trigonometric substitution.

1. If the integrand contains $\sqrt{a^{2}-x^{2}}$ let $x=a \sin \theta$ where $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$, then

$$
\sqrt{a^{2}-x^{2}}=\sqrt{a^{2}-a^{2} \sin ^{2} \theta}=a \cos \theta \quad \text { and } \quad \mathrm{d} x=a \cos \theta \mathrm{~d} \theta
$$

We now have an integral containing sines and cosines, which is (hopefully) amenable to the methods of the last section.
2. If the integrand contains $\sqrt{a^{2}+x^{2}}$ let $x=a \tan \theta$ where $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$, then

$$
\sqrt{a^{2}+x^{2}}=\sqrt{a^{2}+a^{2} \tan ^{2} \theta}=a \sec \theta \quad \text { and } \quad \mathrm{d} x=a \sec ^{2} \theta \mathrm{~d} \theta
$$

We now have an integral containing secants and tangents.
3. If the integrand contains $\sqrt{x^{2}-a^{2}}$ let $x=a \sec \theta$ where $0 \leq \theta<\frac{\pi}{2}$ or $\pi \leq \theta<\frac{3 \pi}{2}$, then

$$
\sqrt{x^{2}-a^{2}}=\sqrt{a^{2} \sec ^{2} \theta-a^{2}}=a \tan \theta \quad \text { and } \quad \mathrm{d} x=a \sec \theta \tan \theta \mathrm{~d} \theta
$$

We again have an integral containing secants and tangents.

Examples

1. For our first example of the method, we check an integral that may be easily dispatched via the susbtitution $u=4-x^{2}$.

$$
\int x \sqrt{4-x^{2}} \mathrm{~d} x=\int \sqrt{u}\left(-\frac{1}{2} \mathrm{~d} u\right)=-\frac{1}{3} u^{3 / 2}+c=-\frac{1}{3}\left(4-x^{2}\right)^{3 / 2}+c
$$

Instead we apply the methods of this section: let $x=2 \sin \theta$, then $\mathrm{d} x=2 \cos \theta \mathrm{~d} \theta$, and

$$
\begin{aligned}
\int x \sqrt{4-x^{2}} \mathrm{~d} x & =\int 2 \sin \theta \sqrt{4+4 \sin ^{2} \theta} \cdot 2 \cos \theta \mathrm{~d} \theta=8 \int \sin \theta \cdot \cos ^{2} \theta \mathrm{~d} \theta \\
& =-\frac{8}{3} \cos ^{3} \theta+c \quad \quad \text { (substitute } u=\cos \theta \text { explicitly if you need to) } \\
& =-\frac{8}{3}\left(\cos \left(\sin ^{-1} \frac{x}{2}\right)\right)^{3}+c
\end{aligned}
$$

This answer is revolting! How can we simplify the $\cos \left(\sin ^{-1}\right)$ expression? Since trigonometric functions are defined using right-angled triangles, we draw one with angle $\theta=\sin ^{-1} \frac{x}{2}$. This says that

$$
\frac{x}{2}=\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}
$$

so we draw our triangle with opposite x and hypotenuse 2. We want

$$
\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}
$$

which, after applying Pythagoras' Theorem to calculate the length $\sqrt{4-x^{2}}$ of the adjacent, gives us our result:

$$
\int x \sqrt{4-x^{2}} \mathrm{~d} x=-\frac{8}{3}\left(\frac{\sqrt{4-x^{2}}}{2}\right)^{3}+c=-\frac{1}{3}\left(4-x^{2}\right)^{3 / 2}+c
$$

as before.
2. This time we use $x=4 \sin \theta$: then $\mathrm{d} x=4 \cos \theta \mathrm{~d} \theta$, and

$$
\begin{aligned}
\int \frac{1}{\left(16-x^{2}\right)^{3 / 2}} \mathrm{~d} x & =\int \frac{1}{\left(16-16 \sin ^{2} \theta\right)^{3 / 2}} \cdot 4 \cos \theta \mathrm{~d} \theta=\int \frac{4 \cos \theta}{16^{3 / 2}\left(\cos ^{2} \theta\right)^{3 / 2}} \mathrm{~d} \theta \\
& =\frac{1}{16} \int \sec ^{2} \theta \mathrm{~d} \theta=\frac{1}{16} \tan \theta+c=\frac{x}{16 \sqrt{16-x^{2}}}+c
\end{aligned}
$$

To finish things off we needed another triangle, drawn below.

$$
\frac{x}{4}=\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}
$$

so we draw our triangle with opposite x and hypotenuse 4. We want

$$
\tan \theta=\frac{\text { opposite }}{\text { adjacent }}
$$

3. For definite integrals, we can change the limits as we go, so no triangle pictures are necessary. Here we let $x=\sqrt{2} \sin \theta$ then $\mathrm{d} x=\sqrt{2} \cos \theta \mathrm{~d} \theta$. The limits become $x=0 \Longleftrightarrow \theta=0$ and $x=\sqrt{2} \Longleftrightarrow \theta=\frac{\pi}{2}$, whence

$$
\begin{aligned}
\int_{0}^{\sqrt{2}} x^{3} \sqrt{2-x^{2}} \mathrm{~d} x & =\int_{0}^{\frac{\pi}{2}} 2 \sqrt{2} \sin ^{3} \theta \sqrt{2-2 \sin ^{2} \theta} \cdot \sqrt{2} \cos \theta \mathrm{~d} \theta \\
& =4 \sqrt{2} \int_{0}^{\frac{\pi}{2}} \sin ^{3} \theta \cos ^{2} \theta \mathrm{~d} \theta=4 \sqrt{2} \int_{0}^{\frac{\pi}{2}}\left(\cos ^{2} \theta-\cos ^{4} \theta\right) \sin \theta \mathrm{d} \theta \\
& =\left.4 \sqrt{2}\left(-\frac{1}{3} \cos ^{3} \theta+\frac{1}{5} \cos ^{5} \theta\right)\right|_{0} ^{\frac{\pi}{2}}=\frac{8 \sqrt{2}}{15}
\end{aligned}
$$

Example could alternatively have been done via the substitution $u=2-x^{2}$: try it!

The Area of an Ellipse

An ellipse with semi-major axis a and semi-minor axis b has equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Its total area is four times the area of the upper-right quadrant: this is the integral

$$
A=4 \int_{0}^{a} b \sqrt{1-\frac{x^{2}}{a^{2}}} \mathrm{~d} x=\frac{4 b}{a} \int_{0}^{a} \sqrt{a^{2}-x^{2}} \mathrm{~d} x
$$

which can be computed using the substitution $x=a \sin \theta$. Remember to change the limits...

$$
\begin{aligned}
A & =\frac{4 b}{a} \int_{0}^{\pi / 2} \sqrt{a^{2}-a^{2} \sin ^{2} \theta} \cdot a \cos \theta \mathrm{~d} \theta \\
& =4 a b \int_{0}^{\pi / 2} \cos ^{2} \theta \mathrm{~d} \theta \\
& =2 a b \int_{0}^{\pi / 2} 1+\cos 2 \theta \mathrm{~d} \theta=\pi a b
\end{aligned}
$$

Examples with Secant and Tangent Substitutions

1. Let $x=3 \sec \theta$ to obtain $\mathrm{d} x=3 \sec \theta \tan \theta \mathrm{~d} \theta$. Then

$$
\begin{aligned}
\int \frac{\sqrt{x^{2}-9}}{x} \mathrm{~d} x & =\int \frac{\sqrt{9 \sec ^{2} \theta-9}}{3 \sec \theta} \cdot 3 \sec \theta \tan \theta \mathrm{~d} \theta \\
& =3 \int \tan ^{2} \theta \mathrm{~d} \theta=3 \int \sec ^{2} \theta-1 \mathrm{~d} \theta \\
& =3 \tan \theta-3 \theta+c \\
& =\sqrt{x^{2}-9}-3 \sec ^{-1} \frac{x}{3}+c
\end{aligned}
$$

The last step requires a triangle.

$$
\frac{x}{3}=\sec \theta=\frac{1}{\cos \theta}=\frac{\text { hypotenuse }}{\text { adjacent }}
$$

so we draw our triangle with hypotenuse x and adjacent 3 . We want

$$
\tan \theta=\frac{\text { opposite }}{\text { adjacent }}=\frac{\sqrt{x^{2}-9}}{3}
$$

2. This time we set $x=5 \tan \theta$:

$$
\begin{aligned}
\int \frac{1}{x^{2} \sqrt{25+x^{2}}} \mathrm{~d} x & =\int \frac{5 \sec ^{2} \theta}{25 \tan ^{2} \theta \cdot 5 \sec \theta} \mathrm{~d} \theta=\frac{1}{25} \int \frac{1}{\tan ^{2} \theta \cos \theta} \mathrm{~d} \theta=\frac{1}{25} \int \frac{\cos \theta}{\sin ^{2} \theta} \mathrm{~d} \theta \\
& =-\frac{1}{25 \sin \theta}+c=-\frac{\sqrt{25+x^{2}}}{25 x}+c
\end{aligned}
$$

Try drawing the required triangle yourself.

More general expressions $\sqrt{Q(x)}$
By completing the square and changing variables, any quadratic $Q(x)$ may be transformed to one of the standard forms.

Example By completing the square, $6 x-x^{2}=9-(x-3)^{2}$ which, through the substitution $u=$ $x-3$, yields

$$
\begin{aligned}
\int \frac{x}{\sqrt{6 x-x^{2}}} \mathrm{~d} x & =\int \frac{x}{\sqrt{9-(x-3)^{2}}} \mathrm{~d} x=\int \frac{3+u}{\sqrt{9-u^{2}}} \mathrm{~d} u=3 \sin ^{-1} \frac{u}{3}-\sqrt{9-u^{2}}+c \\
& =3 \sin ^{-1}\left(\frac{x-3}{3}\right)-\sqrt{6 x-x^{2}}+c
\end{aligned}
$$

Suggested problems

1. (a) Evaluate the integral $\int_{0}^{\sqrt{2}} \frac{x^{2}}{\sqrt{4-x^{2}}} \mathrm{~d} x$
(b) Evaluate $\int \frac{x \mathrm{~d} x}{\sqrt{16+4 x^{2}}}$ using a trigonometric substitution. What method would have been easier?
2. Consider the function $f(x)=\left(9+x^{2}\right)^{-1 / 2}$ on the interval $[0,4]$
(a) Find the area under the curve $y=f(x)$.
(b) Find the volume when the region under the curve is rotated around the x-axis.
(c) (Hard) Find the volume when the region under the curve is rotated around the y-axis.
3. Evaluate the integral $\int \frac{x^{2}+2 x+4}{\sqrt{x^{2}-4 x}} \mathrm{~d} x, x>4$ (You may quote the integrals of $\sec \theta$ and $\sec ^{3} \theta$)
