
8 Further Applications of Integration

8.1 Arc length

Arc length refers to computing the length of a curve. At its simplest, the idea is nothing more than

distance =
∫

speed

Suppose you have a particle which travels along a curve y = f (x) between x = a and x = b, in such
a fashion so that its x-co-ordinate is a measure of time. That is, at time t the particle is at the point
(x, y) = (t, f (t)).
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We divide the interval [a, b] into equal subintervals of length ∆x = b−a
n . Viewing x as ‘time’, we

imagine a particle travelling to the right along the curve in such a way that i∆x seconds after starting,
the particle’s location is the point

Pi = (xi, f (xi))

It should be clear that the particle has to move faster whenever the curve is steeper. Indeed the length
of the curve should be approximately the sum of the distances between the points P0, . . . , Pn:

Arc-length ≈
n

∑
i=1
|Pi−1Pi|

The lengths of these line segments may be computed using Pythagoras’ Theorem. Using linear ap-
proximations, we see that

∆y ≈ f ′(xi)∆x

whence

∆s =
√
(∆x)2 + (∆y)2 (Pythagoras’)

≈
√
(∆x)2 + ( f ′(xi)∆x)2 (Linear approximation)

=
√

1 + [ f ′(xi)]2∆x
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It follows that the arc-length is approximately the Riemann sum

Arc-length ≈
n

∑
i=1

√
1 + [ f ′(xi)]2∆x

Since taking more intervals should give a better approximation, we conclude:

Theorem. If the derivative f ′(x) is continuous on the interval [a, b] then the arc-length of the curve y = f (x)
between x = a and x = b is the integral

Arc-length =
∫ b

a

√
1 + [ f ′(x)]2 dx

One way of interpreting this expression is that if the particle’s x-co-ordinate increases by an in-
finitessimal amount dx, then the distance the particle travels will be larger than dx by the factor√

1 + [ f ′(x)]2 due to the fact that the particle will also move vertically. If we assume that x is mea-
suring time, then the expression ds

dx =
√

1 + [ f ′(x)]2 is precisely the speed of the particle so that we
really are just integrating speed to get distance.1

1. The curve y = f (x) = 1
48 x3 + 4

x + 1 is drawn for 1 ≤ x ≤ 5. Since f ′(x) = 1
16 x2 − 4

x2 we have

1 + f ′(x)2 = 1 +
1

256
x4 − 1

2
+

16
x4 =

(
1
16

x2 +
4
x2

)2

It follows that the arc-length of the curve is∫ 5

1

√
1 + f ′(x)2 dx =

∫ 5

1

1
16

x2 +
4
x2 dx =

1
48

x3 − 4
x

∣∣∣5
1
=

31
12

+
16
5

=
347
60

(≈ 5.7833)

In the animation, the computer is calculating the value of the Riemann sums (the sum of the
lengths of the orange lines) for the given number of line segments. Notice how the Riemann
sum is always an underestimate here.

1In multivariable calculus you will consider parametric curves where both the x and y-co-ordinates of a point are func-
tions of t. This yields the more symmetric formulæ

speed =
√

x′(t)2 + y′(t)2 =⇒ arc-length =
∫ t1

t0

√
x′(t)2 + y′(t)2 dt

Our formula is simply this one with x = t.
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2. Similarly y = f (x) = 1
32 x2 − 4 ln x + 7 for 1 ≤ x ≤ 15 has

1 + f ′(x)2 = 1 +
1

256
x2 − 1

2
+

16
x2 =

(
1
16

x +
4
x

)2

from which the arc-length is∫ 15

1

√
1 + f ′(x)2 dx =

∫ 15

1

1
16

x +
4
x

dx =
1

32
x2 + 4 ln x

∣∣∣15

1
= 7 + 4 ln 15

3. We can use the same approach to confirm the well-known formula for the circumference of a
circle. A circle of radius r has equation x2 + y2 = r2 from which the circumference is four times
the arc-length of the quarter-circle in the positive quadrant: that is

Circumference = 4
∫ r

0

√
1 + f ′(x)2 dx

where f (x) =
√

r2 − x2. Computing this out, we have

Circumference = 4
∫ r

0

√
1 +

[ −x√
r2 − x2

]2

dx = 4
∫ r

0

√
1 +

x2

r2 − x2 dx

= 4
∫ r

0

√
r2

r2 − x2 dx = 4r
∫ r

0

1√
r2 − x2

dx

= 4r sin−1 x
r

∣∣∣∣r
x=0

= 4r
π

2
= 2πr

4. A hanging chain is modelled by the curve y = ex+e−x

2 where x lies between ± ln 4. Its length is
then ∫ ln 4

− ln 4

√
1 +

(
dy
dx

)2

dx = 2
∫ ln 4

0

√
1 +

(
ex − e−x

2

)2

dx (the integrand is even)

= 2
∫ ln 4

0

√
1 +

e2x − 2 + e−2x

4
dx

= 2
∫ ln 4

0

√(
ex + e−x

2

)2

dx

= 2
∫ ln 4

0

ex + e−x

2
dx = ex − e−x

∣∣∣∣ln 4

0

= 4− 1
4
=

15
4

All of these examples are highly contrived so that when we square f ′(x) and add 1 we still get a
perfect square! If you try to compute the arc-length for a most functions you will be faced with an
intergal that is very difficult, if not impossible, to compute exactly. For example, to find the arc-length
of the parabola y = x2 from x = 0 to 1 requires us to compute the integral∫ 1

0

√
1 + 4x2 dx =

1
2

∫ tan−1 2

0
sec3θ dθ
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where we used the obvious trigonometric substitution x = 1
2 tan θ. This integral still requires some

tricks! If you look back at the very hard stuff in the trigonometric integrals chapter you might ulti-
mately be able to show that the arc-length is 1

2

√
5 + 1

4 ln(2 +
√

5), but it’s very hard work. The moral
is that easy functions have difficult arc-length computations: to get a simple arc-length you need to
start with a specially designed function!

Suggested problems

1. Evaluate the length of the curve y = 1
3 x3/2 where 0 ≤ x ≤ 60.

2. Find the length of the curve y = 2
3 x3/2 − 1

2 x1/2 where 1 ≤ x ≤ 9.

3. Let a > 0 and A > 0 be constant. Show that the arc-length integral of the curve

y = Aeax +
1

4a2A
e−ax

for 0 ≤ x ≤ ln 2 is

A(2a − 1)− 1
4a2A

(2−a − 1)
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