Points and Position Vectors

Point P =
$$(x_0, y_0, z_0)$$
 (co-ordinates x_0, y_0, z_0)

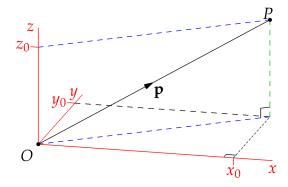
Position vector joins origin O (origin) to P

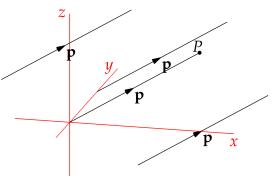
$$\mathbf{p} = \overrightarrow{OP} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} = \langle x_0, y_0, z_0 \rangle = x_0 \mathbf{i} + y_0 \mathbf{j} + z_0 \mathbf{k}$$

Length =
$$\sqrt{x_0^2 + y_0^2 + z_0^2} = \sqrt{\left(\sqrt{x_0^2 + y_0^2}\right)^2 + z_0^2}$$

General $vector \mathbf{p}$: any directed line segment with same length and direction

Does *not* require tail at origin, tip at *P*





b

Dot Product and Projection

Given
$$\mathbf{a} = \overrightarrow{OA} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
, $\mathbf{b} = \overrightarrow{OB} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ define

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Decompose **a** into component λ **b** = $\operatorname{proj}_{\mathbf{b}}$ **a** parallel to **b** and **p** perpendicular. Use Pythagoras to find λ :

$$|\mathbf{a}|^2 = |\lambda \mathbf{b}|^2 + |\mathbf{p}|^2 \iff \lambda = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|^2}$$

Scalar Projection of **a** onto **b**: comp_b $\mathbf{a} = \lambda |\mathbf{b}| = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|}$

Angle between vectors:
$$\lambda = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|} = |\mathbf{a}| \cos \theta \Longrightarrow \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

Orthogonality $\theta = 0 \iff \mathbf{a} \cdot \mathbf{b} = 0$

Vector Projection of **a** onto **b**:
$$\operatorname{proj}_{\mathbf{b}} \mathbf{a} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|^2} \mathbf{b} = (\operatorname{comp}_{\mathbf{b}} \mathbf{a}) \frac{\mathbf{b}}{|\mathbf{b}|}$$

Vector projection has $length \ comp_b \ a = \frac{a \cdot b}{|b|} = |a| \cos \theta$, in *direction* of unit vector $\frac{b}{|b|}$ parallel to b

Work done by force **F** in moving object through displacement **d** is

Cross Product, Right Hand Rule, Area and Volume

Given
$$\mathbf{a} = \overrightarrow{OA} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
, $\mathbf{b} = \overrightarrow{OB} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$, define

$$\mathbf{a} \times \mathbf{b} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$$

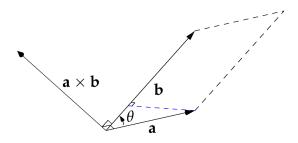
Length $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$ equals¹ area of parallelogram spanned by \mathbf{a}, \mathbf{b}

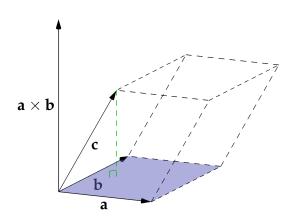
Parallel:
$$\theta = 0 \iff \mathbf{a} \times \mathbf{b} = \mathbf{0}$$

Right-hand Rule: if curl fingers of right hand from a to b, then thumb points in the direction of $a \times b$ (Some memory aids...)

Triple Product: $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = |\mathbf{a} \times \mathbf{b}| \operatorname{comp}_{\mathbf{a} \times \mathbf{b}} \mathbf{c}$

Triple produce equals the (signed) volume of the parallelepiped spanned by \mathbf{a} , \mathbf{b} , \mathbf{c}





Parametrized Lines

To describe a line: choose a point P (position vector \mathbf{r}_0) and a direction vector \mathbf{v} Position vectors of point on the line:

stion vectors of point on the line.

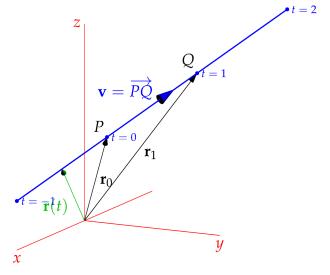
$$\mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{v}$$
 (parameter $t \in \mathbb{R}$)

As t changes, tip traces line through P parallel to \mathbf{v}

Alternative description: *choose two points* P, Q (*position vectors* \mathbf{r}_0 , \mathbf{r}_1)

$$\mathbf{r}(t) = (1-t)\mathbf{r}_0 + t\mathbf{r}_1$$

To compare: $\mathbf{v} = \mathbf{r}_1 - \mathbf{r}_0 = \overrightarrow{PQ}$



¹Multiply out $|\mathbf{a} \times \mathbf{b}|^2$ and compare it to $|\mathbf{a}|^2 |\mathbf{b}|^2 \sin^2 \theta = |\mathbf{a}|^2 |\mathbf{b}|^2 (1 - \cos^2 \theta) = |\mathbf{a}|^2 |\mathbf{b}|^2 - (\mathbf{a} \cdot \mathbf{b})^2$ (horrible!)

Planes

1. Through point P (position vector \mathbf{r}_0), perpendicular to \mathbf{n}

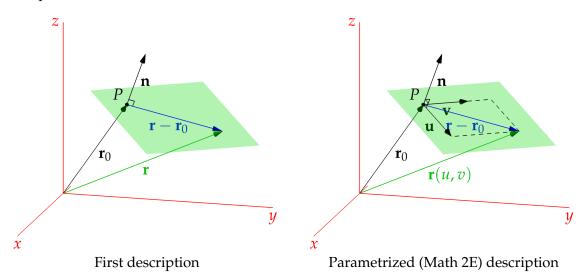
$$\mathbf{n}\cdot(\mathbf{r}-\mathbf{r}_0)=0$$

 $\mathbf{r} - \mathbf{r}_0$ parallel to plane

2. (For Math 2E) Through a point P, spanned by constant vectors \mathbf{u} , \mathbf{v}

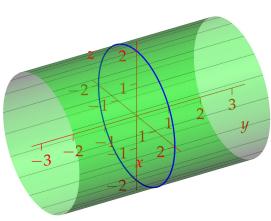
$$\mathbf{r}(u,v) = \mathbf{r}_0 + u\mathbf{u} + v\mathbf{v}$$

Two parameters $u, v \in \mathbb{R}$

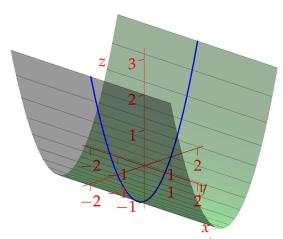


Cylinders

Translate a plane curve to form a surface



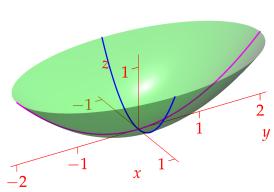
Right-circular cylinder $x^2 + z^2 = 4$



Parabolic cylinder $z = y^2 - 1$

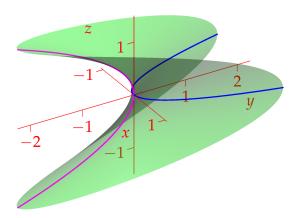
Paraboloids

Use the co-ordinate curves to help visualize/sketch



Elliptic paraboloid
$$z = x^2 + \frac{y^2}{4}$$

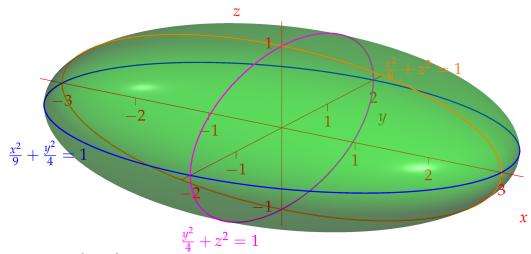
 $z = x^2$ $z = \frac{y^2}{4}$



Hyperbolic paraboloid $y = 2x^2 - z^2$ $y = 2x^2$ $y = -z^2$

Ellipsoids

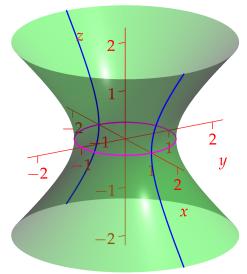
Standard formula: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ describes 'squashed/stretched sphere'



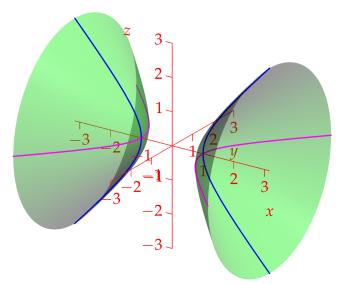
Example $\frac{x^2}{9} + \frac{y^2}{4} + z^2 = 1$: each intersection with a co-ordinate plane is an *ellipse*

Hyperboloids

Standard formula: $\pm \frac{x^2}{a^2} \pm \frac{y^2}{b^2} \pm \frac{z^2}{c^2} = 1$ with one or two negative signs Again use the co-ordinate curves to help visualize/sketch

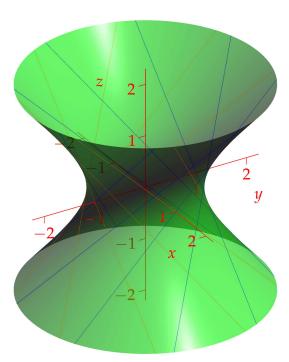


One sheet (single – sign) $x^2 + y^2 - z^2 = 1$ Circle $x^2 + y^2 = 1$ Hyperbola $x^2 - z^2 = 1$



Two sheets (two – signs)
$$x^2 - y^2 - z^2 = 1$$

Hyperbolæ $x^2 - y^2 = 1$ $x^2 - z^2 = 1$



First example as a doubly-ruled surface