Chapter 13: Written problems

13.1 Vector Functions and Spacecurves

- 1. At what points does the helix $\mathbf{r}(t) = \begin{pmatrix} \sin t \\ \cos t \\ t \end{pmatrix}$ intersect the sphere $x^2 + y^2 + z^2 = 5$?
- 2. Find a vector function that represents the curve of intersection of the two surfaces.
 - (a) The cylinder $x^2 + y^2 = 4$ and the surface z = xy.
 - (b) The paraboloid $z = 4x^2 + y^2$ and the parabolic cylinder $y = x^2$.
 - (c) The semi-ellipsoid $x^2 + y^2 + 4z^2 = 4$, $y \ge 0$, and the cylinder $x^2 + z^2 = 1$.

13.2 Derivatives and Integrals of Vector Functions

1. Find the derivative of the vector valued function

$$\mathbf{r}(t) = at\cos 3t\mathbf{i} + b\sin^3 t\mathbf{j} + c\cos^3 t\mathbf{k}$$

2. Find the unit tangent vector $\mathbf{T}(t)$ at the point on the curve

$$\mathbf{r}(t) = (t^3 + 3t)\mathbf{i} + (t^2 + 1)\mathbf{j} + (3t + 4)\mathbf{k}$$

where t = 1.

3. Find a point on the curve

$$\mathbf{r}(t) = \begin{pmatrix} 2\cos t \\ 2\sin t \\ e^t \end{pmatrix}, \quad 0 \le t \le \pi$$

where the tangent line is parallel to the plane $\sqrt{3}x + y = 1$.

4. Find $\mathbf{r}(t)$ if $\mathbf{r}'(t) = t\mathbf{i} + e^t\mathbf{j} + te^t\mathbf{k}$ and $\mathbf{r}(0) = \mathbf{i} + \mathbf{j} + \mathbf{k}$.

13.3 Arc-length and Curvature

- 1. Find the length of the curve $\mathbf{r}(t) = \cos t\mathbf{i} + \sin t\mathbf{j} + \ln \cos t\mathbf{k}$, $0 \le t \le \frac{\pi}{4}$.
- 2. Find the curvature of $\mathbf{r}(t) = t^2 \mathbf{i} + \ln t \mathbf{j} + t \ln t \mathbf{k}$, at the point (1,0,0).
- 3. At what point does the curve $y = \ln x$ have maximum curvature?

13.4 Motion in Space: Velocity and Acceleration

- 1. If a particle follows the path $\mathbf{r}(t) = e^t \mathbf{i} + e^{2t} \mathbf{j}$, find its velocity, acceleration, and speed. Sketch the path and draw the velocity and acceleration vectors when t = 0.
- 2. Show that if a particle travels at constant speed, then its velocity and acceleration vectors are orthogonal.
- 3. A gun is fired with angle of elevation 30° . What is the muzzle speed if the maximum height of the shell is $500 \,\mathrm{m}$?