Math 2D Multi-Variable Calculus Homework Questions 1

10 Parametric Equations and Polar Co-ordinates

10.1 Curves Defined by Parametric Equations

2-4 Sketch the curve by using the parametric equations to plot points. Indicate with an arrow the direction in which the curve is traced as t increases.
2. $x=t^{2}, \quad y=t^{3}-4 t, \quad-3 \leq t \leq 3$
4. $x=e^{-t}+t, \quad y=e^{t}-t, \quad-2 \leq t \leq 2$

6-16 (a) Sketch the curve parameterized by x and y, indicating the direction of travel. When the domain of the parameter is not given, assume that it is as large as possible.
(b) Eliminate the parameter to find a Cartesian equation of the curve.
6. $x=1-2 t, \quad y=\frac{1}{2} t-1, \quad-2 \leq t \leq 4$.
8. * $x=t-1, \quad y=t^{3}+1, \quad-2 \leq t \leq 2$.
12. $x=\frac{1}{2} \cos \theta, \quad y=2 \sin \theta, \quad 0 \leq \theta \leq \pi$.
16. $x=\sqrt{t+1}, \quad y=\sqrt{t-1}$.
28. * Match the parametric equations with the graphs labeled I-VI. Give reasons for your choice. Don't even think about using a graphing device for this!
(a) $x=t^{4}-t+1, \quad y=t^{2}$.
(d) $x=\cos 5 t, \quad y=\sin 2 t$.
(b) $x=t^{2}-2 t, \quad y=\sqrt{t}$.
(e) $x=t+\sin 4 t, \quad y=t^{2}+\cos 3 t$.
(c) $x=\sin 2 t, \quad y=\sin (t+\sin 2 t)$.
(f) $x=\frac{\sin 2 t}{4+t^{2}}, \quad y=\frac{\cos 2 t}{4+t^{2}}$.

40. Let P be a point at a distance d from the center of a circle of radius r. The curve traced out by P as the circle rolls along the straight line is called a trochoid. The cycloid is the special case where $d=r$. Supposing that $t=0$ when P is at its lowest point, where t is the same angle used in our description of the cycloid, prove that the parametric equations of the trochoid are

$$
x(t)=r t-d \sin t, \quad y=r-d \cos t .
$$

42. If a and b are fixed numbers, find parametric equations for the curve that consists of all possible positions of the point P in the figure, using the angle θ as the parameter. The line segment $A B$ is tangent to the larger circle. Show further, by eliminating the parameter, that the Cartesian equation of the curve is

$$
\frac{a^{2}}{x^{2}}+\frac{y^{2}}{b^{2}}=1 .
$$

Finally, sketch the curve!

10.2 Calculus with Parametric Curves

4. Find an equation of the tangent line to the curve parametrized by $x=t-t^{-1}$ and $y=1+t^{2}$, at $t=1$.
5. * Repeat question 4. for $x=\sin ^{3} \theta, \quad y=\cos ^{3} \theta, \quad \theta=\frac{\pi}{6}$.
6. A curve is parameterized by $x=\cos t+\cos 2 t, y=\sin t+\sin 2 t$. Find the equation of the tangent(s) to the curve at the point $(-1,1)$. Also graph the curve and the tangents.
7. * Let $x=t^{3}+1, \quad y=t^{2}-t$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$. For which values of t is the curve concave up?
8. A curve is parameterized by $x=t^{3}-3 t, \quad y=t^{3}-3 t^{2}$. Find the points on the curve where the tangent is horizontal or vertical.
9. Find equations of the tangents to the curve $x=3 t^{2}+1, y=2 t^{3}+1$ that pass through the point $(4,3)$.
10. Find the area enclosed by the curve $x=t^{2}-2 t, \quad y=\sqrt{t}$ and the y-axis.
11. Find the exact length of the curve defined by $x=e^{t}+e^{-t}, \quad y=5-2 t$, where $0 \leq t \leq 3$.
12. * Find the exact length of the curve defined by $x=3 \cos t-\cos 3 t, y=3 \sin t-\sin 3 t$, where $0 \leq t \leq \pi$.

10.3 Polar Co-ordinates

8-12 Sketch the region in the plane consisting of points whose polar co-ordinates satisfy the given conditions.
8. $0 \leq r<2, \quad \pi \leq \theta \leq \frac{3 \pi}{2}$
10. $1 \leq r \leq 3, \quad \frac{\pi}{6}<\theta<\frac{5 \pi}{6}$
12. $r \geq 1, \pi \leq \theta \leq 2 \pi$

16-20 Identify the curve by finding a Cartesian equation for the curve.
16. $r=4 \sec \theta$
20. * $r=\tan \theta \sec \theta$

22-26 Find a polar equation for the curve represented by the given Cartesian equation.
22. $y=x$
26. ${ }^{*} x y=4$

30-46 Sketch the curve with the given polar equation.
30. $r=1-\cos \theta$
36. * $r=\cos 5 \theta$
44. $r^{2} \theta=1$
46. $r=3+4 \cos \theta$
50. Show that the curve $r=2-\csc \theta$ has the line $y=-1$ as a horizontal asymptote by showing that $\lim _{r \rightarrow \pm \infty} y=-1$. Use this fact to help sketch the curve.
52. Sketch the curve $\left(x^{2}+y^{2}\right)^{3}=4 x^{2} y^{2}$.

