Math 2D Multi-Variable Calculus Homework Questions 2

12 Vectors and the Geometry of Space

12.1 Three-dimensional Co-ordinate Systems

12 Find an equation of the sphere with center $(2,-6,4)$ and radius 5 . Describe its intersection with each of the co-ordinate planes.

16 * Show that the equation represents a sphere, and find its center and radius.

$$
x^{2}+y^{2}+z^{2}+8 x-6 y+2 z+17=0
$$

20 * Find an equation of a sphere if one of its diameters has endpoints $(2,1,4)$ and $(4,3,10)$.
28-34 Describe in words the region of \mathbb{R}^{3} represented by the equations or inequalities.
$28 z^{2}=1$
$30 y^{2}+z^{2}=16$
$32 x=z$
$34 x^{2}+y^{2}+z^{2}>2 z$
36 Write inequalities to describe the solid cylinder that lies on or below the plane $z=8$, and on or above the disk in the $x y$-plane with center the origin and radius 2 .

12.2 Vectors

14 Find a vector a with representation given by the directed line segment $\overrightarrow{A B}$, where $A=(4,0,-2)$ and $B=(4,2,1)$. Draw $\overrightarrow{A B}$ and the equivalent representation starting at the origin.

22 If $\mathbf{a}=2 \mathbf{i}-4 \mathbf{j}+4 \mathbf{k}$ and $\mathbf{b}=2 \mathbf{j}-\mathbf{k}$, find $\mathbf{a}+\mathbf{b}, 2 \mathbf{a}+3 \mathbf{b},|\mathbf{a}|$, and $|\mathbf{a}-\mathbf{b}|$.
26 Find a vector with the same direction as $-2 \mathbf{i}+4 \mathbf{j}+2 \mathbf{k}$ but with length 6 .
30 * If a child pulls a sled through the snow on a level path with a force of 50 N exerted at an angle of 38° above the horizontal, find the horizontal and vertical components of the force.

38 * The tension T at either end of the chain has magnitude 25 N . What is the weight of the chain?

42 (a) Find the unit vectors that are parallel to the tangent line to the curve $y=2 \sin x$ at the point $(\pi / 6,1)$.
(b) Find the unit vectors that are perpendicular to the tangent line.
(c) Sketch the curve $y=2 \sin x$ and the vectors in parts (a) and (b), all starting at ($\pi / 6,1$).

12.3 The Dot Product

30 Find the acute angle betweent the lines $x+2 y=7$ and $5 x-y=2$.
32 Find the acute angles between the curves $y=\sin x$ and $y=\cos x$ at their point of intersection in the interval $(0, \pi / 2)$. (The angle between two curves is the angle between their tangent lines at the point of intersection).

42 Find the scalar and vector projections of $\mathbf{b}=5 \mathbf{i}-\mathbf{j}+4 \mathbf{k}$ onto $\mathbf{a}=-2 \mathbf{i}+3 \mathbf{j}-6 \mathbf{k}$. (Only vector projection examinable.)

50 A tow truck drags a stalled car along a road. The chain makes an angle of 30° with the road and the tension in the chain is 1500 N . How much work is done by the truck in pulling the car 1 km ?

52 * A boat sails south with the help of a wind blowing in the direction $\mathrm{S} 36^{\circ} \mathrm{E}$ with magnitude 400 lb . Find the work done by the wind as the boat moves 120 ft .

56 * Find the angle between a diagonal of a cube and a diagonal of one of its faces.

12.4 The Cross Product

18 If $\mathbf{a}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), \mathbf{b}=\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)$, and $\mathbf{c}=\left(\begin{array}{l}0 \\ 1 \\ 3\end{array}\right)$, show that

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{c}) \neq(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} .
$$

20 Find two unit vectors orthogonal to both $\mathbf{j}-\mathbf{k}$ and $\mathbf{i}+\mathbf{j}$.
22 Show that $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b}=0$ for all bectors \mathbf{a}, \mathbf{b} in \mathbb{R}^{3}.
38 * Use the scalar triple product to determine whether the points $A(1,3,2), B(3,-1,6), C(5,2,0)$, and $D(3,6,-4)$ lie in the same plane.
$44{ }^{*}$ (a) Find all vectors \mathbf{v} that satisfy

$$
\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \times \mathbf{v}=\left(\begin{array}{c}
3 \\
1 \\
-5
\end{array}\right)
$$

(b) Explain why there is no vector \mathbf{v} that satisfies

$$
\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \times \mathbf{v}=\left(\begin{array}{l}
3 \\
1 \\
5
\end{array}\right)
$$

