Math 2D Multi-Variable Calculus Homework Questions 3

12.5 Equations of Lines and Planes

6-12 Find an equation of the line.
6 The line through the origin and the point $(4,3,-1)$.
8 The line through the points (1.0,2.4, 4.6) and (2.6, 1.2, 0.3).
10 * The line through $(2,1,0)$ and perpendicular to both $\mathbf{i}+\mathbf{j}$ and $\mathbf{j}+\mathbf{k}$.
$12 *$ The line of intersection of the planes $x+2 y+3 z=1$ and $x-y+z=1$.
24-34 Find an equation of the plane.
$24 *$ The plane through the point $(5,3,5)$ and with normal vector $2 \mathbf{i}+\mathbf{j}-\mathbf{k}$.
28 The plane through the point $(2,4,6)$ and parallel to the plane $z=x+y$.
32 * The plane through the origin and the points $(2,-4,6)$ and $(5,1,3)$.
34 * The plane that passes through the point $(6,0,-2)$ and contains the line $x=3 t, y=1+t$, $z=7+4 t$.

46 Find the point where the line $x=1+2 t, y=4 t, z=2-3 t$ intersects the plane $x+2 y-z=-1$.
63 Find an equation for the plane containing all points that are equidistant from the points $(2,5,5)$ and $(-6,3,1)$.

12.6 Cylinders and Quadrics

21-28 *(submit all 8) Match the equation with its graph (labeled I-VIII). Give reasons for your choices.
$21 x^{2}+4 y^{2}+9 z^{2}=1$
$23 x^{2}-y^{2}+z^{2}=1$
$25 y=2 x^{2}+z^{2}$
$27 x^{2}+2 z^{2}=1$
$229 x^{2}+4 y^{2}+z^{2}=1$
$24-x^{2}+y^{2}-z^{2}=1$
$26 y^{2}=x^{2}+2 z^{2}$
$28 y=x^{2}-z^{2}$

$44 *$ Find an equation for the surface obtained by rotating the line $x=3 y$ about the y-axis. (Typo book rotates about x-axis)

46 Find an equation for the surface consisting of all points P for which the distance from P to the x-axis is twice the distance from P to the $y z$-plane. Identify the surface.

50 * Show that the curve of intersection of the surfaces $x^{2}+2 y^{2}-z^{2}+3 x=1$ and $2 x^{2}+4 y^{2}-$ $2 z^{2}-5 y=0$ lies in a plane.

13 Vector Functions

13.1 Vector Functions and Spacecurves

30 * At what points does the helix $\mathbf{r}(t)=\left(\begin{array}{c}\sin t \\ \cos t \\ t\end{array}\right)$ intersect the sphere $x^{2}+y^{2}+z^{2}=5$?
40-44 Find a vector function that represents the curve of intersection of the two surfaces.
40 The cylinder $x^{2}+y^{2}=4$ and the surface $z=x y$.
$42 *$ The paraboloid $z=4 x^{2}+y^{2}$ and the parabolic cylinder $y=x^{2}$.
44 The semi-ellipsoid $x^{2}+y^{2}+4 z^{2}=4, y \geq 0$, and the cylinder $x^{2}+z^{2}=1$.

13.2 Derivatives and Integrals of Vector Functions

14 Find the derivative of the vector valued function

$$
\mathbf{r}(t)=a t \cos 3 t \mathbf{i}+b \sin ^{3} t \mathbf{j}+c \cos ^{3} t \mathbf{k} .
$$

18 Find the unit tangent vector $\mathbf{T}(t)$ at the point on the curve

$$
\mathbf{r}(t)=\left(t^{3}+3 t\right) \mathbf{i}+\left(t^{2}+1\right) \mathbf{j}+(3 t+4) \mathbf{k}
$$

where $t=1$.
28 Find a point on the curve

$$
\mathbf{r}(t)=\left(\begin{array}{c}
2 \cos t \\
2 \sin t \\
e^{t}
\end{array}\right), \quad 0 \leq t \leq \pi
$$

where the tangent line is parallel to the plane $\sqrt{3} x+y=1$.
$42{ }^{*}$ Find $\mathbf{r}(t)$ if $\mathbf{r}^{\prime}(t)=t \mathbf{i}+e^{t} \mathbf{j}+t e^{t} \mathbf{k}$ and $\mathbf{r}(0)=\mathbf{i}+\mathbf{j}+\mathbf{k}$.

13.3 Arc-length and Curvature

4 Find the length of the curve $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+\ln \cos t \mathbf{k}, 0 \leq t \leq \frac{\pi}{4}$.
24 Find the curvature of $\mathbf{r}(t)=t^{2} \mathbf{i}+\ln t \mathbf{j}+t \ln t \mathbf{k}$, at the point $(1,0,0)$.
30 At what point does the curve $y=\ln x$ have maximum curvature?

13.4 Motion in Space: Velocity and Acceleration

6 If a particle follows the path $\mathbf{r}(t)=e^{t} \mathbf{i}+e^{2 t} \mathbf{j}$, find its velocity, acceleration, and speed. Sketch the path and draw the velocity and acceleration vectors when $t=0$.

22 Show that if a particle travels at constant speed, then its velocity and acceleration vectors are orthogonal.

26 A gun is fired with angle of elevation 30°. What is the muzzle speed if the maximum height of the shell is 500 m ?

14 Partial Derivatives

14.1 Functions of Several Variables

14-18 Find and sketch the domain of the function.
$14 f(x, y)=\sqrt{x y}$.
$16 f(x, y)=\sqrt{x^{2}-y^{2}}$.
$18 f(x, y)=\sqrt{y}+\sqrt{25-x^{2}-y^{2}}$.
24-30 Sketch some contour lines for each function. Use these to help sketch the graph of the function.
$24 f(x, y)=2-x$.
$26 f(x, y)=e^{-y}$.
$28 f(x, y)=1+2 x^{2}+2 y^{2}$.
$30 f(x, y)=\sqrt{4 x^{2}+y^{2}}$.

14.2 Limits and Continuity

30-36 Determine the set of points at which the function is continuous.
$30 F(x, y)=\cos \sqrt{1+x-y}$.
$32 H(x, y)=\frac{e^{x}+e^{y}}{e^{x y}-1}$.
$34 G(x, y)=\tan ^{-1}\left(\left(x^{2}+y^{2}\right)^{-2}\right)$.
$36 f(x, y, z)=\sqrt{y-x^{2}} \ln z$.

14.3 Partial Derivatives

16-40 Find the first partial derivatives of the function.
$16 f(x, y)=x^{4} y^{3}+8 x^{2} y$
$20 z=\tan x y$
$24 w=\frac{e^{v}}{u+v^{2}}$
$28 f(x, y)=x^{y}$
$32 f(x, y, z)=x \sin (y-z)$
$36 u=x^{y / z}$
$40 u=\sin \left(x_{1}+2 x_{2}+\cdots+n x_{n}\right)$
54-58 Find all the second partial derivatives.
$54 f(x, y)=\sin ^{2}(m x+n y)$
$56 v=\frac{x y}{x-y}$
$58 v=e^{x e^{y}}$
84 Show that the Cobb-Douglas production function $P=b L^{\alpha} K^{\beta}$ satisfies the equation

$$
L \frac{\partial P}{\partial L}+K \frac{\partial P}{\partial K}=(\alpha+\beta) P
$$

90 If a, b, c are the sides of a triangle, and A, B, C are the opposite angles, find $\frac{\partial A}{\partial a}, \frac{\partial A}{\partial b}, \frac{\partial A}{\partial c}$ by implicit differentiation of the Law of Cosines.

