
16.2 Line Integrals

Definition. Let 𝑓  be a continuous scalar function and 𝐶 a curve in 2-space parametrized by a function

r(𝑡) = (𝑥(𝑡)
𝑦(𝑡)) = 𝑥(𝑡) i + 𝑦(𝑡) j, 𝑎 ≤ 𝑡 ≤ 𝑏

where 𝑥(𝑡), 𝑦(𝑡) have continuous first derivatives. We define two types of line integral.

1. The line integral of 𝑓  along 𝐶 with respect to arc-length is

∫
𝐶

𝑓 d𝑠 ∶= ∫
𝑏

𝑎
𝑓 (r(𝑡)) ∣r′(𝑡)∣ d𝑡 = ∫

𝑏

𝑎
𝑓 (𝑥(𝑡), 𝑦(𝑡))√𝑥′(𝑡)2 + 𝑦′(𝑡)2 d𝑡

The arc-length1 of the curve is the integral ∫𝐶 d𝑠 = ∫𝑏
𝑎 𝑓 ∣r′(𝑡)∣ d𝑡 = ∫𝑏

𝑎
√𝑥′(𝑡)2 + 𝑦′(𝑡)2 d𝑡.

2. The line integral of 𝑓  along 𝐶 with respect to 𝑥 is

∫
𝐶

𝑓 d𝑥 ∶= ∫
𝑏

𝑎
𝑓 (𝑥(𝑡), 𝑦(𝑡))𝑥′(𝑡) d𝑡

The line integral with respect to 𝑦 is similar.

The definitions are identical in 3-dimensions, except that 𝑓  is now a function of three variables: e.g.

∫
𝐶

𝑓 d𝑠 ∶= ∫
𝑏

𝑎
𝑓 (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡))√𝑥′(𝑡)2 + 𝑦′(𝑡)2 + 𝑧′(𝑡)2 d𝑡

Example 1 If 𝐶 is the parabola 𝑦 = 𝑥2 for 1 ≤ 𝑥 ≤ 2, compute ∫𝐶
𝑦
𝑥 d𝑠 and ∫𝐶 5𝑦2 d𝑥 + 2 d𝑦.

First parametrize the curve. The obvious choice is plainly

r(𝑡) = (𝑥(𝑡)
𝑦(𝑡)) = ( 𝑡

𝑡2)

from which d𝑠 = √𝑥′(𝑡)2 + 𝑦′(𝑡)2 d𝑡 = √1 + 4𝑡2 d𝑡. We therefore 
have,

∫
𝐶

𝑦
𝑥d𝑠 = ∫

2

1

𝑡2

𝑡
√1 + 4𝑡2 d𝑡 = ∫

2

1
𝑡(1 + 4𝑡2)1/2 d𝑡

=
1

3/2 ⋅
1
8[1 + 4𝑡2]3/2∣

2

1
=

1
12(173/2 − 53/2)

∫
𝐶

5𝑦2 d𝑥 + 2 d𝑦 = ∫
2

1
5𝑡4 d𝑡 + 2 ⋅ 2𝑡 d𝑡 = 𝑡5 + 2𝑡2∣

2

1
= 37
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1The letter 𝑠 usually indicates distance or displacement in Physics. If, at time 𝑡, a particle has traveled a distance 𝑠(𝑡)
along a curve 𝐶 parametrized by r(𝑡), then its speed is d𝑠

d𝑡 = ∣r′(𝑡)∣. Integrating both sides with respect to 𝑡 must recover the 
arc-length of the curve:

Arc-length = ∫
𝑏

𝑎

d𝑠
d𝑡 d𝑡 = ∫

𝑏

𝑎
∣r′(𝑡)∣ d𝑡 = ∫

𝐶
1 d𝑠

1


   𝑓 


$f$


   𝐶 


$C$


           r  (  𝑡  )  =    (              𝑥  (  𝑡  )        𝑦  (  𝑡  )          )   =  𝑥  (  𝑡  )    i  +  𝑦  (  𝑡  )    j  ,    𝑎  ≤  𝑡  ≤  𝑏    


\begin {equation*}\vr (t)=\twovec {x(t)}{y(t)} =x(t)\,\vi +y(t)\,\vj ,\quad a\le t\le b\end {equation*}


   𝑥  (  𝑡  )  ,  𝑦  (  𝑡  ) 


$x(t),y(t)$


$f$


$C$


             ∫  𝐶   𝑓      d  𝑠   ∶  =    ∫  𝑎  𝑏   𝑓  (  r  (  𝑡  )  )    |    r  ′   (  𝑡  )  |         d  𝑡   =    ∫  𝑎  𝑏   𝑓  (  𝑥  (  𝑡  )  ,  𝑦  (  𝑡  )  )        𝑥  ′   (  𝑡    )  2   +    𝑦  ′   (  𝑡    )  2         d  𝑡     


\begin {equation*}\int _Cf\,\ds :=\int _a^bf\big (\vr (t)\big )\nm {\vr '(t)}\,\dt =\int _a^bf\big (x(t),y(t)\big )\sqrt {x'(t)^2+y'(t)^2}\,\dt \end {equation*}


   𝑠 


$s$


   𝑡 


$t$


   𝑠  (  𝑡  ) 


$s(t)$


$C$


   r  (  𝑡  ) 


$\vr (t)$


       d  𝑠     d  𝑡    =    |    r  ′   (  𝑡  )  |  


$\diff [s]{t}=\nm {\vr '(t)}$


$t$


            Arc-length   =    ∫  𝑎  𝑏       d  𝑠     d  𝑡      d  𝑡   =    ∫  𝑎  𝑏     |    r  ′   (  𝑡  )  |         d  𝑡   =    ∫  𝐶   1      d  𝑠     


\begin {equation*}\text {Arc-length}=\int _a^b\diff [s]{t}\dt =\int _a^b\nm {\vr '(t)}\,\dt =\int _C 1\,\ds \end {equation*}


     ∫  𝐶       d  𝑠   =    ∫  𝑎  𝑏   𝑓      |    r  ′   (  𝑡  )  |         d  𝑡   =    ∫  𝑎  𝑏         𝑥  ′   (  𝑡    )  2   +    𝑦  ′   (  𝑡    )  2         d  𝑡  


$\int _C\,\ds =\int _a^bf\nm {\vr '(t)}\,\dt =\int _a^b\sqrt {x'(t)^2+y'(t)^2}\,\dt $


$f$


$C$


   𝑥 


$x$


             ∫  𝐶   𝑓      d  𝑥   ∶  =    ∫  𝑎  𝑏   𝑓  (  𝑥  (  𝑡  )  ,  𝑦  (  𝑡  )  )    𝑥  ′   (  𝑡  )      d  𝑡     


\begin {equation*}\int _Cf\,\dx :=\int _a^bf\big (x(t),y(t)\big )x'(t)\,\dt \end {equation*}


   𝑦 


$y$


$f$


             ∫  𝐶   𝑓      d  𝑠   ∶  =    ∫  𝑎  𝑏   𝑓  (  𝑥  (  𝑡  )  ,  𝑦  (  𝑡  )  ,  𝑧  (  𝑡  )  )        𝑥  ′   (  𝑡    )  2   +    𝑦  ′   (  𝑡    )  2   +    𝑧  ′   (  𝑡    )  2         d  𝑡     


\begin {equation*}\int _Cf\,\ds :=\int _a^bf\big (x(t),y(t),z(t)\big )\sqrt {x'(t)^2+y'(t)^2+z'(t)^2}\,\dt \end {equation*}


$C$


   𝑦  =    𝑥  2  


$y=x^2$


   1  ≤  𝑥  ≤  2 


$1\le x\le 2$


     ∫  𝐶     𝑦  𝑥       d  𝑠  


$\int _C\frac yx\,\ds $


     ∫  𝐶   5    𝑦  2       d  𝑥   +  2      d  𝑦  


$\int _C5y^2\,\dx +2\,\dy $


           r  (  𝑡  )  =    (              𝑥  (  𝑡  )        𝑦  (  𝑡  )          )   =    (              𝑡          𝑡  2           )     


\begin {equation*}\vr (t)=\twovec {x(t)}{y(t)}=\twovec {t}{t^2}\end {equation*}


     d  𝑠   =        𝑥  ′   (  𝑡    )  2   +    𝑦  ′   (  𝑡    )  2         d  𝑡   =      1  +  4    𝑡  2         d  𝑡  


$\ds =\sqrt {x'(t)^2+y'(t)^2}\,\dt =\sqrt {1+4t^2}\,\dt $


                   ∫  𝐶     𝑦  𝑥     d  𝑠      =    ∫  1  2       𝑡  2   𝑡       1  +  4    𝑡  2         d  𝑡   =    ∫  1  2   𝑡  (  1  +  4    𝑡  2     )    1  /  2        d  𝑡                =    1    3  /  2    ⋅    1  8   [  1  +  4    𝑡  2     ]    3  /  2      |  1  2   =    1   12    (     17     3  /  2    −    5    3  /  2    )               ∫  𝐶   5    𝑦  2       d  𝑥   +  2      d  𝑦   =    ∫  1  2   5    𝑡  4       d  𝑡   +  2  ⋅  2  𝑡      d  𝑡   =    𝑡  5   +  2    𝑡  2     |  1  2   =   37     


\begin {gather*}\begin {aligned} \int _C\frac yx\ds &=\int _1^2\frac {t^2}t\sqrt {1+4t^2}\,\dt =\int _1^2t(1+4t^2)^{1/2}\,\dt \\ &=\frac 1{3/2}\cdot \frac 18[1+4t^2]^{3/2}\Big |_1^2 =\frac 1{12}(17^{3/2}-5^{3/2}) \end {aligned}\\ \int _C5y^2\,\dx +2\,\dy =\int _1^25t^4\,\dt +2\cdot 2t\,\dt =t^5+2t^2\Big |_1^2 =37\end {gather*}


           r  (  𝑡  )  =    (              𝑥  (  𝑡  )        𝑦  (  𝑡  )        𝑧  (  𝑡  )          )   =    (              𝑅     cos     𝑡        𝑅     sin     𝑡        ℎ  𝑡          )   ,    0  ≤  𝑡  ≤  4  𝜋    


\begin {equation*}\vr (t)=\threevec {x(t)}{y(t)}{z(t)}=\threevec {R\cos t}{R\sin t}{ht},\quad 0\le t\le 4\pi \end {equation*}


   𝑅 


$R$


   ℎ 


$h$


   𝜌 


$\rho $


   𝜌  (  𝑥  ,  𝑦  ,  𝑧  )  =  𝑧  (  4  𝜋  ℎ  −  𝑧  ) 


$\rho (x,y,z)=z(4\pi h-z)$


             ∫  𝐶   𝜌  (  r  (  𝑡  )  )      d  𝑠      =    ∫  0    4  𝜋    𝜌  (  r  (  𝑡  )  )        𝑅  2        sin   2     𝑡  +    𝑅  2        cos   2     𝑡  +    ℎ  2         d  𝑡             =        𝑅  2   +    ℎ  2       ∫  0    4  𝜋    𝜌  (  r  (  𝑡  )  )      d  𝑡     


\begin {align*}\int _C\rho \big (\vr (t)\big )\,\ds &=\int _0^{4\pi }\rho (\vr (t))\sqrt {R^2\sin ^2t+R^2\cos ^2t+h^2}\,\dt \\ &=\sqrt {R^2+h^2}\int _0^{4\pi }\rho \big (\vr (t)\big )\,\dt \end {align*}


$\rho $


   4  𝜋  𝜌        𝑅  2   +    ℎ  2    


$4\pi \rho \sqrt {R^2+h^2}$


             ∫  𝐶   𝜌  (  r  (  𝑡  )  )      d  𝑠      =        𝑅  2   +    ℎ  2       ∫  0    4  𝜋    𝑧  (  4  𝜋  ℎ  −  𝑧  )      d  𝑡   =        𝑅  2   +    ℎ  2       ∫  0    4  𝜋    ℎ  𝑡      (  4  𝜋  ℎ  −  ℎ  𝑡  )         d  𝑡             =    ℎ  2         𝑅  2   +    ℎ  2       ∫  0    4  𝜋    4  𝜋  𝑡  −    𝑡  2       d  𝑡   =    ℎ  2         𝑅  2   +    ℎ  2     ⋅    1  6   (  4  𝜋    )  3             =       32     𝜋  3    3     ℎ  2         𝑅  2   +    ℎ  2       


\begin {align*}\int _C\rho \big (\vr (t)\big )\,\ds &=\sqrt {R^2+h^2}\int _0^{4\pi }z(4\pi h-z)\,\dt =\sqrt {R^2+h^2}\int _0^{4\pi }ht\left (4\pi h-ht\right )\,\dt \\ &=h^2\sqrt {R^2+h^2}\int _0^{4\pi }4\pi t-t^2\,\dt =h^2\sqrt {R^2+h^2}\cdot \frac 16(4\pi )^3\\ &=\frac {32\pi ^3}3h^2\sqrt {R^2+h^2}\end {align*}


     ∫  𝐶     𝑥  2   (  𝑦  +  1  )      d  𝑠  


$\int _Cx^2(y+1)\,\ds $


$C$


     r  𝑏   (  𝑡  )  =    (          1  −  𝑡           0      )   ,    0  ≤  𝑡  ≤  1 


$\vr _b(t)=\stwovec {1-t}0,\ 0\le t\le 1$


             ∫    𝐶  𝑏    𝑓      d  𝑠   =    ∫  0  1   (  1  −  𝑡    )  2       (  −  1    )  2   +    0  2         d  𝑡   =    1  3     


\begin {equation*}\int _{C_b}f\,\ds =\int _0^1(1-t)^2\sqrt {(-1)^2+0^2}\,\dt =\frac 13\end {equation*}


   𝑓  =  0    ⟹      ∫    𝐶  𝑙    𝑓      d  𝑠   =  0 


$f=0\implies \int _{C_l} f\,\ds =0$


     r  ℎ   (  𝑡  )  =    (          𝑡           1  −  𝑡      )   ,    0  ≤  𝑡  ≤  1 


$\vr _h(t)=\stwovec {t}{1-t},\ 0\le t\le 1$


              ∫    𝐶  ℎ    𝑓      d  𝑠   =    ∫  0  1     𝑡  2   (  1  −  𝑡  +  1  )        1  2   +    1  2         d  𝑡   =    2     ∫  0  1   2    𝑡  2   −    𝑡  3       d  𝑡   =      5    2     12      


\begin {equation*}\int _{C_h}f\,\ds =\int _0^1t^2(1-t+1)\sqrt {1^2+1^2}\,\dt =\sqrt 2\int _0^12t^2-t^3\,\dt =\frac {5\sqrt 2}{12}\end {equation*}


     ∫  𝐶     𝑥  2   (  𝑦  +  1  )      d  𝑠   =    1  3   +      5    2     12   


$\int _Cx^2(y+1)\,\ds =\frac 13+\frac {5\sqrt 2}{12}$


   𝑛  ∈  ℕ 


$n\in \N $


   (    𝑥  0   ,    𝑦  0   )  ,  …  ,  (    𝑥  𝑛   ,    𝑦  𝑛   ) 


$(x_0,y_0),\ldots ,(x_n,y_n)$


$C$


           Δ    𝑠  𝑖   =      (    𝑥  𝑖   −    𝑥    𝑖  −  1      )  2   +  (    𝑦  𝑖   −    𝑦    𝑖  −  1      )  2       (    Δ    𝑠  1   =  Δ    𝑠  2   =  ⋯  =  Δ    𝑠  𝑛   !)  


\begin {equation*}\Delta s_i=\sqrt {(x_i-x_{i-1})^2+(y_i-y_{i-1})^2} \tag {$\Delta s_1=\Delta s_2=\cdots =\Delta s_n$!}\end {equation*}


$f$


$C$


          (    Δ    𝑠  1   =  Δ    𝑠  2   =  ⋯  =  Δ    𝑠  𝑛   !)        ∫  𝐶   𝑓      d  𝑠      =     lim     𝑛  →  ∞      ∑    𝑖  =  1   𝑛   𝑓  (    𝑥  𝑖   ,    𝑦  𝑖   )  Δ    𝑠  𝑖   =     lim     𝑛  →  ∞      ∑    𝑖  =  1   𝑛       𝑓  (    𝑥  𝑖   ,    𝑦  𝑖   )   𝑛   𝑛  Δ    𝑠  𝑖             =    (     lim     𝑛  →  ∞      ∑    𝑖  =  1   𝑛       𝑓  (    𝑥  𝑖   ,    𝑦  𝑖   )   𝑛   )       (     lim     𝑛  →  ∞      𝑛  Δ    𝑠  1   )   =    (     lim     𝑛  →  ∞      ∑    𝑖  =  1   𝑛       𝑓  (    𝑥  𝑖   ,    𝑦  𝑖   )   𝑛   )       (   arc-length of     𝐶    )     


\begin {align*}\int _Cf\,\ds &=\lim _{n\to \infty }\sum _{i=1}^nf(x_i,y_i)\Delta s_i =\lim _{n\to \infty }\sum _{i=1}^n\frac {f(x_i,y_i)}nn\Delta s_i\\ &=\left (\lim _{n\to \infty }\sum _{i=1}^n\frac {f(x_i,y_i)}n\right )\left (\lim _{n\to \infty }n\Delta s_1\right ) =\left (\lim _{n\to \infty }\sum _{i=1}^n\frac {f(x_i,y_i)}n\right )\left (\text {arc-length of $C$}\right )\end {align*}


$f$


$C$


$x$


$C$


             ∫  𝐶   𝑓      d  𝑥   =  (   average value of     𝑓   along     𝐶    )  ⋅  (   change in     𝑥   along     𝐶    )    


\begin {equation*}\int _Cf\,\dx =(\text {average value of $f$ along $C$})\cdot (\text {change in $x$ along $C$})\end {equation*}


$C$


   𝑦  =  4  −    1  9     𝑥  2  


$y=4-\frac 19x^2$


   𝑥  =  −  3 


$x=-3$


   𝑥  =  3 


$x=3$


$y$


           𝑃  =   100         (  1  −    𝑦   50    )     5  .  3         kPa     


\begin {equation*}P=100\left (1-\frac y{50}\right )^{5.3}\,\text {kPa}\end {equation*}


   r  (  𝑡  )  =    (          3  𝑡           4  −    𝑡  2       )  


$\vr (t)=\stwovec {3t}{4-t^2}$


   −  1  ≤  𝑡  ≤  1 


$-1\le t\le 1$


             𝑃   av    =        ∫    −  1   1   𝑃  (  r  (  𝑡  )  )    |    r  ′   (  𝑡  )  |         d  𝑡        ∫    −  1   1     |    r  ′   (  𝑡  )  |         d  𝑡     =    1      ∫    −  1   1       9  +  4    𝑡  2         d  𝑡       ∫    −  1   1    100         (  1  −      4  −    𝑡  2     50    )     5  .  3          9  +  4    𝑡  2         d  𝑡     


\begin {equation*}P_{\text {av}} =\frac {\int _{-1}^1P\big (\vr (t)\big )\nm {\vr '(t)}\,\dt }{\int _{-1}^1\nm {\vr '(t)}\,\dt } =\frac 1{\int _{-1}^1\sqrt {9+4t^2}\,\dt } \int _{-1}^1 100\left (1-\frac {4-t^2}{50}\right )^{5.3}\sqrt {9+4t^2}\,\dt \end {equation*}


             𝑃   av    =   66   .   95      kPa, to 2d.p.     


\begin {equation*}P_{\text {av}}=66.95\,\text {kPa, to 2\,d.p.}\end {equation*}


     2  3  


$\frac 23$


   𝑥  ,  𝑦  ,  𝑧 


$x,y,z$


   F  (  𝑥  ,  𝑦  )  =    (          𝑃  (  𝑥  ,  𝑦  )           𝑄  (  𝑥  ,  𝑦  )      )  


$\vF (x,y)=\stwovec {P(x,y)}{Q(x,y)}$


$C$


   F 


$\vF $


$\vF $


$C$


             ∫  𝐶   F  ⋅  d  r  =    ∫  𝐶     (              𝑃        𝑄          )   ⋅    (              d  𝑥        d  𝑦          )   =    ∫  𝐶   𝑃      d  𝑥   +  𝑄      d  𝑦     (add     𝑅      d  𝑧    in three dimensions)  


\begin {equation*}\int _C\vF \cdot \D \vr =\int _C\twovec {P}{Q}\cdot \twovec {\dx }{\dy } =\int _C P\,\dx +Q\,\dy \tag {add $R\,\dz $ in three dimensions}\end {equation*}


$C$


$\vF $


     𝐶  1  


$C_1$


     𝑥  2   +    𝑦  2   =    𝑅  2  


$x^2+y^2=R^2$


$R$


   r  (  𝑡  )  =    (          𝑅     cos     𝑡           𝑅     sin     𝑡      )  


$\vr (t)=\stwovec {R\cos t}{R\sin t}$


   d  r  =  𝑅      (          −   sin     𝑡            cos     𝑡      )       d  𝑡  


$\dvr =R\stwovec {-\sin t}{\cos t}\dt $


     F  𝑎   (  𝑥  ,  𝑦  )  =    (          𝑥           𝑦      )  


$\vF _a(x,y)=\stwovec xy$


             𝑊  𝑎   =    ∫  0    2  𝜋      𝑅  2   (  −   sin     𝑡     cos     𝑡  +   cos     𝑡     sin     𝑡  )      d  𝑡   =  0    


\begin {equation*}W_a=\int _0^{2\pi }R^2(-\sin t\cos t+\cos t\sin t)\,\dt =0\end {equation*}


     F  𝑏   (  𝑥  ,  𝑦  )  =    (          −  𝑦           𝑥      )  


$\vF _b(x,y)=\stwovec {-y}x$


             𝑊  𝑏   =    ∫  0    2  𝜋      𝑅  2   (   sin       𝑡  2   +     cos   2     𝑡  )      d  𝑡   =  2  𝜋    𝑅  2     


\begin {equation*}W_b=\int _0^{2\pi }R^2(\sin t^2+\cos ^2t)\,\dt =2\pi R^2\end {equation*}


     F  𝑎  


$\vF _a$


     F  𝑏  


$\vF _b$


     𝑊  𝑎   =  0 


$W_a=0$


     𝑊  𝑏   >  0 


$W_b>0$


     𝑊  2   <  0 


$W_2<0$


     𝐶  2  


$C_2$


   𝑦  =  1  −    𝑥  2  


$y=1-x^2$


   (  −  1  ,  0  ) 


$(-1,0)$


   (  1  ,  0  ) 


$(1,0)$


   r  (  𝑡  )  =    (          𝑡           1  −    𝑡  2       )  


$\vr (t)=\stwovec t{1-t^2}$


$-1\le t\le 1$


$\vF _b(x,y)=\stwovec {-y}x$


$C_2$


             𝑊  2   =    ∫  𝐶   F  ⋅  d  r  =    ∫  𝐶     (              −  𝑦        𝑥          )   ⋅    (              d  𝑥        d  𝑦          )   =    ∫    −  1   1     (                𝑡  2   −  1        𝑡          )   ⋅    (              1        −  2  𝑡          )       d  𝑡   =    ∫    −  1   1   −    𝑡  2   −  1      d  𝑡   =  −    8  3     


\begin {equation*}W_2=\int _C\vF \cdot \D \vr =\int _C\twovec {-y}x\cdot \twovec \dx \dy =\int _{-1}^1\twovec {t^2-1}{t}\cdot \twovec 1{-2t}\dt =\int _{-1}^1 -t^2-1\,\dt = -\frac 83\end {equation*}


$\vF $


   F  =  𝑚    r  ″  


$\vF =m\vr ''$


$\vF $


$C$


   F  ⋅      r  ′     |    r  ′   |    =  F  ⋅  T 


$\vF \cdot \frac {\vr '}{\nm {\vr '}}=\vF \cdot \vT $


   T 


$\vT $


   d  𝑠 


$\ds $


           F  ⋅  T      d  𝑠   =  F  ⋅      r  ′     |    r  ′   |        |    r  ′   |         d  𝑡   =  F  ⋅  d  r    


\begin {equation*}\vF \cdot \vT \,\ds =\vF \cdot \frac {\vr '}{\nm {\vr '}}\nm {\vr '}\,\dt =\vF \cdot \D \vr \end {equation*}


           𝑊  =    ∫  𝐶   F  ⋅  T      d  𝑠   =    ∫  𝐶   F  ⋅  d  r    


\begin {equation*}W=\int _C\vF \cdot \vT \,\ds =\int _C\vF \cdot \D \vr \end {equation*}


$\vr (t)$


     ∫  𝐶   𝑓      d  𝑠  


$\int _Cf\,\ds $


     ∫  𝐶   F  ⋅  d  r 


$\int _C\vF \cdot \dvr $


$C$


$C$


   −  𝐶 


$-C$


             ∫    −  𝐶    𝑓      d  𝑠   =    ∫  𝐶   𝑓      d  𝑠      and       ∫    −  𝐶    F  ⋅  d  r  =  −    ∫  𝐶   F  ⋅  d  r    


\begin {equation*}\int _{-C}f\,\ds =\int _Cf\,\ds \quad \text {and}\quad \int _{-C}\vF \cdot \dvr =-\int _C\vF \cdot \dvr \end {equation*}


$\vr (t)$


$C$


   𝑎  ≤  𝑡  ≤  𝑏 


$a\le t\le b$


           R  (  𝑇  )  =  r  (  𝑡  (  𝑇  )  )    


\begin {equation*}\vR (T)=\vr \big (t(T)\big )\end {equation*}


   𝑡  (  𝑇  ) 


$t(T)$


$t(T)$


       d  𝑡     d  𝑇    >  0 


$\diff [t]{T}>0$


     𝑡    −  1    (  𝑎  )  ≤  𝑇  ≤    𝑡    −  1    (  𝑏  ) 


$t^{-1}(a)\le T\le t^{-1}(b)$


          (add     𝑅      d  𝑧    in three dimensions)        ∫      𝑡    −  1    (  𝑎  )       𝑡    −  1    (  𝑏  )    𝑓  (  R  (  𝑇  )  )    |      d  R     d  𝑇    |       d  𝑇     =    ∫      𝑡    −  1    (  𝑎  )       𝑡    −  1    (  𝑏  )    𝑓  (  r  (  𝑡  (  𝑇  )  )  )    |    d    d  𝑇    r  (  𝑡  (  𝑇  )  )  |       d  𝑇         (chain rule)        =    ∫      𝑡    −  1    (  𝑎  )       𝑡    −  1    (  𝑏  )    𝑓  (  r  (  𝑡  (  𝑇  )  )  )    |      d  r     d  𝑡    ⋅      d  𝑡     d  𝑇    |       d  𝑇         (since         d  𝑡     d  𝑇    >  0  )        =    ∫      𝑡    −  1    (  𝑎  )       𝑡    −  1    (  𝑏  )    𝑓  (  r  (  𝑡  (  𝑇  )  )  )    |      d  r     d  𝑡    |         d  𝑡     d  𝑇      d  𝑇         (substitution rule)        =    ∫  𝑎  𝑏   𝑓  (  r  (  𝑡  )  )    |      d  r     d  𝑡    |         d  𝑡     


\begin {align*}\int _{t^{-1}(a)}^{t^{-1}(b)} f\big (\vR (T)\big ) \nm {\diff [\vR ]{T}}\,\D T &=\int _{t^{-1}(a)}^{t^{-1}(b)} f\big (\vr (t(T))\big ) \nm {\diff T\vr \big (t(T)\big )}\,\D T\\ &=\int _{t^{-1}(a)}^{t^{-1}(b)} f\big (\vr (t(T))\big ) \nm {\diff [\vr ]{t}\cdot \diff [t]{T}}\,\D T \tag {chain rule}\\ &=\int _{t^{-1}(a)}^{t^{-1}(b)} f\big (\vr (t(T))\big ) \nm {\diff [\vr ]{t}}\diff [t]{T}\,\D T \tag {since $\diff [t]{T}>0$}\\ &=\int _{a}^{b} f\big (\vr (t)\big )\nm {\diff [\vr ]{t}}\,\dt \tag {substitution rule}\end {align*}


$\int _Cf\,\ds $


$t(T)$


       d  𝑡     d  𝑇    <  0 


$\diff [t]{T}<0$


     𝑡    −  1    (  𝑏  )  ≤  𝑇  ≤    𝑡    −  1    (  𝑎  ) 


$t^{-1}(b)\le T\le t^{-1}(a)$


     |      d  𝑡     d  𝑇    |   =  −      d  𝑡     d  𝑇   


$\nm {\diff [t]{T}}=-\diff [t]{T}$


     ∫  𝐶   F  ⋅  d  r  =    ∫  𝐶   F  ⋅  T      d  𝑠  


$\int _C\vF \cdot \dvr =\int _C\vF \cdot \vT \,\ds $


$\vT $



Example 2 A length of wire is shaped as a helix parametrized by

r(𝑡) =
⎛⎜⎜⎜
⎝

𝑥(𝑡)
𝑦(𝑡)
𝑧(𝑡)

⎞⎟⎟⎟
⎠

=
⎛⎜⎜⎜
⎝

𝑅 cos 𝑡
𝑅 sin 𝑡

ℎ𝑡

⎞⎟⎟⎟
⎠

, 0 ≤ 𝑡 ≤ 4𝜋

where 𝑅 and ℎ are positive constants. Find the mass of the wire if 
it has: (a) constant density 𝜌 (mass per unit length), and (b) density 
𝜌(𝑥, 𝑦, 𝑧) = 𝑧(4𝜋ℎ − 𝑧) ((thinner at the ends of the wire).

Since mass is the integral of density, we obtain

∫
𝐶

𝜌(r(𝑡)) d𝑠 = ∫
4𝜋

0
𝜌(r(𝑡))√𝑅2 sin2 𝑡 + 𝑅2 cos2 𝑡 + ℎ2 d𝑡

= √𝑅2 + ℎ2 ∫
4𝜋

0
𝜌(r(𝑡)) d𝑡

(a) If 𝜌 is constant this evaluates to 4𝜋𝜌√𝑅2 + ℎ2.

(b) For the tapered wire, the mass is

∫
𝐶

𝜌(r(𝑡)) d𝑠 = √𝑅2 + ℎ2 ∫
4𝜋

0
𝑧(4𝜋ℎ − 𝑧) d𝑡 = √𝑅2 + ℎ2 ∫

4𝜋

0
ℎ𝑡 (4𝜋ℎ − ℎ𝑡) d𝑡

= ℎ2√𝑅2 + ℎ2 ∫
4𝜋

0
4𝜋𝑡 − 𝑡2 d𝑡 = ℎ2√𝑅2 + ℎ2 ⋅

1
6(4𝜋)3

=
32𝜋3

3 ℎ2√𝑅2 + ℎ2

Example 3: A piecewise smooth curve To compute ∫𝐶 𝑥2(𝑦 + 1) d𝑠 over the triangle 𝐶 shown, split 
the curve, and therefore the integral, into three pieces.

Base r𝑏(𝑡) = ( 1−𝑡
0 ) , 0 ≤ 𝑡 ≤ 1 yields

∫
𝐶𝑏

𝑓 d𝑠 = ∫
1

0
(1 − 𝑡)2√(−1)2 + 02 d𝑡 =

1
3

Left 𝑓 = 0 ⟹ ∫𝐶𝑙
𝑓 d𝑠 = 0

Hypotenuse rℎ(𝑡) = ( 𝑡
1−𝑡 ) , 0 ≤ 𝑡 ≤ 1 gives

∫
𝐶ℎ

𝑓 d𝑠 = ∫
1

0
𝑡2(1−𝑡+1)√12 + 12 d𝑡 = √2 ∫

1

0
2𝑡2 −𝑡3 d𝑡 =

5√2
12

0

1
y

0 1
x

Cb

Cl
Ch

C

The total integral is therefore ∫𝐶 𝑥2(𝑦 + 1) d𝑠 = 1
3 + 5√2

12 .

2

http://www.math.uci.edu/~ndonalds/math2e/notes-pics/16-2-ex2.html


Interpretation: Riemann Sums and Averages

Fix 𝑛 ∈ ℕ, suppose that (𝑥0, 𝑦0), … , (𝑥𝑛, 𝑦𝑛) are a sequence of equally-spaced points along the curve 𝐶
separated by distances

Δ𝑠𝑖 = √(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2 (Δ𝑠1 = Δ𝑠2 = ⋯ = Δ𝑠𝑛!)

The line integral of 𝑓  along 𝐶 is then the limit of a sequence of Riemann sums:

∫
𝐶

𝑓 d𝑠 = lim𝑛→∞

𝑛
∑
𝑖=1

𝑓 (𝑥𝑖, 𝑦𝑖)Δ𝑠𝑖 = lim𝑛→∞

𝑛
∑
𝑖=1

𝑓 (𝑥𝑖, 𝑦𝑖)
𝑛 𝑛Δ𝑠𝑖

= ⎛⎜
⎝

lim𝑛→∞

𝑛
∑
𝑖=1

𝑓 (𝑥𝑖, 𝑦𝑖)
𝑛

⎞⎟
⎠

( lim𝑛→∞ 𝑛Δ𝑠1) = ⎛⎜
⎝

lim𝑛→∞

𝑛
∑
𝑖=1

𝑓 (𝑥𝑖, 𝑦𝑖)
𝑛

⎞⎟
⎠

(arc-length of 𝐶)

The first term is the average value of the function 𝑓  along the curve 𝐶.
Provided the 𝑥 co-ordinate of a point on 𝐶 always moves in the same direction, we may interpret

∫
𝐶

𝑓 d𝑥 = (average value of 𝑓  along 𝐶) ⋅ (change in 𝑥 along 𝐶)

However, if the curve 𝐶 starts to double back on itself, this interpretation doesn’t hold.

Example A hiker climbs a mountain pass modeled by the equation 𝑦 = 4 − 1
9𝑥2 from 𝑥 = −3 to 𝑥 = 3, 

with distance measured in kilometers. If the air pressure at 𝑦 km above sea level is modeled by

𝑃 = 100 (1 −
𝑦
50)

5.3
kPa

Express the average air pressure along the trail using line integrals.
Parametrize the trail by r(𝑡) = ( 3𝑡

4−𝑡2 ) for −1 ≤ 𝑡 ≤ 1. The average air pressure is then

𝑃av =
∫1

−1 𝑃(r(𝑡)) ∣r′(𝑡)∣ d𝑡

∫1
−1 |r′(𝑡)| d𝑡

=
1

∫1
−1

√9 + 4𝑡2 d𝑡
∫

1

−1
100 (1 −

4 − 𝑡2

50 )
5.3

√9 + 4𝑡2 d𝑡

The numerator cannot be evaluated exactly, but with the assistance of a computer we estimate

𝑃av = 66.95 kPa, to 2 d.p.

On average, the hiker will have approximate 2
3  of the oxygen available at sea-level.

Line Integrals though Vector Fields: Work

Line integrals with respect to the co-ordinate functions 𝑥, 𝑦, 𝑧 appear very often in physical applications.

Definition. Suppose F(𝑥, 𝑦) = ( 𝑃(𝑥,𝑦)
𝑄(𝑥,𝑦) ) is a vector field and 𝐶 a curve whose domain lies inside that 

of F. The line integral of F along 𝐶 is the integral

∫
𝐶

F ⋅ dr = ∫
𝐶

(𝑃
𝑄) ⋅ (d𝑥

d𝑦) = ∫
𝐶

𝑃 d𝑥 + 𝑄 d𝑦 (add 𝑅 d𝑧 in three dimensions)

This is also known as the work done by the field to a particle moving along 𝐶. Strictly this terminology 
should only be used when F is a force field (measured in Newtons).

3



Examples 1. A particle moves once around 𝐶1, the circle 𝑥2+𝑦2 = 𝑅2 of radius 𝑅. We may parametrize 
this r(𝑡) = ( 𝑅 cos 𝑡

𝑅 sin 𝑡 ), from which dr = 𝑅 ( − sin 𝑡
cos 𝑡 ) d𝑡.

(a) The work done by the radial field F𝑎(𝑥, 𝑦) = ( 𝑥
𝑦 ) on the particle is

𝑊𝑎 = ∫
2𝜋

0
𝑅2(− sin 𝑡 cos 𝑡 + cos 𝑡 sin 𝑡) d𝑡 = 0

(b) By contrast, the work done by the rotational field F𝑏(𝑥, 𝑦) = ( −𝑦
𝑥 ) is

𝑊𝑏 = ∫
2𝜋

0
𝑅2(sin 𝑡2 + cos2 𝑡) d𝑡 = 2𝜋𝑅2

Both particles make the same journey: in the first case the travel is perpendicular to the field, so 
F𝑎 neither helps nor hinders the journey; in the second case, the field F𝑏 provides a tailwind.

y

x
R−R

R

−R

C1

y

x
R−R

R

−R

C1

1
y

−1 0 1
x

C2

 1 (a): 𝑊𝑎 = 0  1 (b): 𝑊𝑏 > 0  2: 𝑊2 < 0

2. A particle moves along the parabola 𝐶2 with equation 𝑦 = 1 − 𝑥2 between (−1, 0) and (1, 0). 
Parametrizing this by r(𝑡) = ( 𝑡

1−𝑡2 ) with −1 ≤ 𝑡 ≤ 1, we see that the work done by the same 
rotational field F𝑏(𝑥, 𝑦) = ( −𝑦

𝑥 ) in moving a particle along 𝐶2 is

𝑊2 = ∫
𝐶

F ⋅ dr = ∫
𝐶

(−𝑦
𝑥 ) ⋅ (d𝑥

d𝑦) = ∫
1

−1
(𝑡2 − 1

𝑡 ) ⋅ ( 1
−2𝑡) d𝑡 = ∫

1

−1
−𝑡2 − 1 d𝑡 = −

8
3

The work done is negative since the particle generally moves against the push of the field.

Physical Significance: Why “Work”?

Work done is energy transferred. A force field F accelerates a particle, 
causing it to gain or lose kinetic energy (motion) in accordance with 
Newton’s second law (F = 𝑚r″).
The contribution of F to accelerating the particle along 𝐶 is the compo­
nent that points in the direction of travel: the dot product F ⋅ r′

∣r′∣ = F ⋅ T, 
where T is the unit tangent vector.

C
r′

F

F · T
r

O
The kinetic energy gained by the particle over an infinitesimal arc-length d𝑠 is then

F ⋅ T d𝑠 = F ⋅
r′

|r′| ∣r′∣ d𝑡 = F ⋅ dr

The work done by the field is the net gain of kinetic energy, the sum of all infinitesimal contributions:

𝑊 = ∫
𝐶

F ⋅ T d𝑠 = ∫
𝐶

F ⋅ dr

4



Orientation and Parameterization

To evaluate every integral thus far, we first made an explicit choice of parametrization r(𝑡). But this 
merely measures how fast and in what direction we travel along the curve (its orientation). What happens 
if we change these things?

Theorem. Suppose ∫𝐶 𝑓 d𝑠 or ∫𝐶 F ⋅ dr are line integrals along a curve 𝐶.

1. The values of both integrals are independent of orientation-preserving re-parametrizations of 𝐶.

2. Label by −𝐶 the same curve but with its orientation reversed. Then

∫
−𝐶

𝑓 d𝑠 = ∫
𝐶

𝑓 d𝑠 and ∫
−𝐶

F ⋅ dr = − ∫
𝐶

F ⋅ dr

The upshot is that you can use any orientation-preserving parametrization you like and nothing will 
change! As a sanity check, think about how arc-length doesn’t care in which direction you measure a 
curve, but that the work done switches sign if you push against the wind…

Proof. Suppose r(𝑡) parametrizes 𝐶 with 𝑎 ≤ 𝑡 ≤ 𝑏. Any other parametrization has the form

R(𝑇) = r(𝑡(𝑇))

where 𝑡(𝑇) is a 1–1, onto function. There are two cases.

1. Orientation-preserving: 𝑡(𝑇) is increasing, d𝑡
d𝑇 > 0, and 𝑡−1(𝑎) ≤ 𝑇 ≤ 𝑡−1(𝑏). Now compute:

∫
𝑡−1(𝑏)

𝑡−1(𝑎)
𝑓 (R(𝑇)) ∣

dR
d𝑇 ∣ d𝑇 = ∫

𝑡−1(𝑏)

𝑡−1(𝑎)
𝑓 (r(𝑡(𝑇))) ∣

d
d𝑇 r(𝑡(𝑇))∣ d𝑇

= ∫
𝑡−1(𝑏)

𝑡−1(𝑎)
𝑓 (r(𝑡(𝑇))) ∣

dr
d𝑡 ⋅

d𝑡
d𝑇 ∣ d𝑇 (chain rule)

= ∫
𝑡−1(𝑏)

𝑡−1(𝑎)
𝑓 (r(𝑡(𝑇))) ∣

dr
d𝑡 ∣

d𝑡
d𝑇 d𝑇 (since d𝑡

d𝑇 > 0)

= ∫
𝑏

𝑎
𝑓 (r(𝑡)) ∣

dr
d𝑡 ∣ d𝑡 (substitution rule)

The values of ∫𝐶 𝑓 d𝑠 are the same regardless of the parametrization.

2. Orientation-reversing: 𝑡(𝑇) is decreasing, d𝑡
d𝑇 < 0, and 𝑡−1(𝑏) ≤ 𝑇 ≤ 𝑡−1(𝑎). The calculation is 

identical, except that the limits on the integral are reversed and that ∣ d𝑡
d𝑇 ∣ = − d𝑡

d𝑇 . Both changes 
contribute a negative sign, whence the total value of the integral is unchanged.

For the force integral, write ∫𝐶 F ⋅ dr = ∫𝐶 F ⋅ T d𝑠 and observe that T changes sign when the orientation 
is reversed.
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