16.3 The Fundamental Theorem of Line Integrals

The Fundamental Theorem of Calculus says that we may evaluate the integral of a derivative simply
by knowing the values of the function at the endpoints of the interval of integration:

b
j frx)dx =f(b) - f(a)

The Fundamental Theorem of Line Integrals is an analogue of this for multi-variable functions.

Theorem (Fundamental Theorem of Line Integrals). Suppose that C is a smooth curve from points A to
B parametrized by x(t) fora <t < b. Let f be a differentiable function whose domain includes C and whose
gradient vector Vf is continuous on C. Then

J Vf -dr =f(x(b)) — f(x(a)) =f(B) —f(A)
C
Alternatively: if F is a continuous conservative vector field with potential function f then

J F.dr = f(end of C) — f (start of C)
C

A line integral in a conservative vector field is independent of path: its value depends only on the
endpoints of the curve, not on the path between them. This idea is really important and we’ll return to
it shortly.

The long caveats about differentiability and continuity in the Theorem’s statement are merely so that
the original Fundamental Theorem of Calculus can be invoked in the proof.

Proof. (n =2 or 3 for the purposes of this course)
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where we applied FTC in the final step.

L.

Examples 1. Let C be the curve parametrized by r(t) = ( 1t15’siifr‘12tf) for 0 <t < 27t. Then

j V(x2y?) - dr = x2y3|(1’2m =87m% — 0 =873
c (1,0



2. Let C be parametrized by r(t) = ( it—}] ) for2 <t < 3. Then

8 8 3
I sinydx + xcosydy = j V(xsiny) -dr = xsiny|(26;3) =26sin 5 — 7sin =

3. Evaluate the line integrals f cy dx + x dy where C; is the straight line from (0,0) and (1,1), and

C, is the parabola y = x2 between the same points.
We may parametrize the first curve r(t) = (1), so
1
I ydx+xdy = j 2tdt =1
1 0

For the second r(f) = ( ttz ), s0

1
I ydx+xdy:J'ﬂdt+29dt:1
C 0

2

We expected the two solutions to be the same since (¥) = V(xy) is conservative. We could

instead simply have applied the Fundamental Theorem:

(1,1)
J <y>-dr:j V(xy) -dr = xy =1
c, \* C; (0,0)

Conservation of Energy

The terminology we use (conservative, potential, etc.) all comes from Physics.

Suppose that a particle of mass m follows a path C through a conservative force field F = —Vf.
Parametrize C so that the particle is at time t its position is r(t) and its velocity is v(t) = r'(t).
The particle has kinetic energy K = %m iv|> and is said to have potential energy f.

We evaluate the line integral [ c F - drin two ways:

1. Newton’s second law (F = ma = mv’) says tha
t

d1 1 t
——Wﬁw:—mwﬂ;:AK
0

f
LF-dr:mL vii) -vi)dt=m _ d2 5
0

0

is the change in kinetic energy over the path.

2. By the Fundamental Theorem,

LF-dr = —LVf-dr = —f(r(t))|§:) = —-Af

is negative the change in potential energy of the particle over the path.

We conclude that Af + AK = 0: total energy is conserved. This is why potential functions in Physics

tend to have a negative sign: F = —Vf (in mathematics, we omit the negative).

d
—v-v=V .-v4+Vv-V =2V .v.

!By the product rule, 3



             ∫  𝑎  𝑏     𝑓  ′   (  𝑥  )      d  𝑥   =  𝑓  (  𝑏  )  −  𝑓  (  𝑎  )    


\begin {equation*}\int _a^bf'(x)\,\dx =f(b)-f(a)\end {equation*}


   𝐶 


$C$


   𝐴 


$A$


   𝐵 


$B$


   r  (  𝑡  ) 


$\vr (t)$


   𝑎  ≤  𝑡  ≤  𝑏 


$a\le t\le b$


   𝑓 


$f$


$C$


   ∇  𝑓 


$\nabla f$


$C$


             ∫  𝐶   ∇  𝑓  ⋅  d  r  =  𝑓  (  r  (  𝑏  )  )  −  𝑓  (  r  (  𝑎  )  )  =  𝑓  (  𝐵  )  −  𝑓  (  𝐴  )    


\begin {equation*}\int _C\nabla f\cdot \D \vr =f(\vr (b))-f(\vr (a))=f(B)-f(A)\end {equation*}


   F 


$\vF $


$f$


             ∫  𝐶   F  ⋅  d  r  =  𝑓  (   end of    𝐶  )  −  𝑓  (   start of    𝐶  )    


\begin {equation*}\int _C\vF \cdot \D \vr =f(\text {end of }C)-f(\text {start of }C)\end {equation*}


   𝑛  =  2 


$n=2$


   3 


$3$


             ∫  𝐶   ∇  𝑓  ⋅  d  r     =    ∫  𝐶     (                𝑓    𝑥  1          ⋮          𝑓    𝑥  𝑛            )   ⋅    (                  d  𝑥   1         ⋮            d  𝑥   𝑛           )   =    ∫  𝐶       𝜕  𝑓     𝜕    𝑥  1         d  𝑥   1   +  ⋯  +      𝜕  𝑓     𝜕    𝑥  𝑛         d  𝑥   𝑛             =    ∫  𝑎  𝑏     (      𝜕  𝑓     𝜕    𝑥  1         d    𝑥  1      d  𝑡    +  ⋯  +      𝜕  𝑓     𝜕    𝑥  𝑛         d    𝑥  𝑛      d  𝑡    )       d  𝑡          (chain rule)        =    ∫  𝑎  𝑏     d    d  𝑡    𝑓  (    𝑥  1   (  𝑡  )  ,  …  ,    𝑥  𝑛   (  𝑡  )  )    d  𝑡   =    ∫  𝑎  𝑏     d    d  𝑡    𝑓  (  r  (  𝑡  )  )    d  𝑡             =  𝑓  (  r  (  𝑏  )  )  −  𝑓  (  r  (  𝑎  )  )    


\begin {align*}\int _C\nabla f\cdot \D \vr &=\int _C\threevec {f_{x_1}}{\vdots }{f_{x_n}}\cdot \threevec {\dx _1}{\vdots }{\dx _n} =\int _C\partials [f]{x_1}\dx _1+\cdots +\partials [f]{x_n}\dx _n\\ &=\int _a^b\left (\partials [f]{x_1}\diff [x_1]{t}+\cdots +\partials [f]{x_n}\diff [x_n]{t}\right )\dt \\ &=\int _a^b\diff tf(x_1(t),\ldots ,x_n(t))\dt =\int _a^b\diff tf(\vr (t))\dt \tag {chain rule}\\ &=f\big (\vr (b)\big )-f\big (\vr (a)\big )\end {align*}


$C$


   r  (  𝑡  )  =    (          1  +     sin   2     𝑡           𝑡  +   sin     𝑡      )  


$\vr (t)=\stwovec {1+\sin ^2t}{t+\sin t}$


   0  ≤  𝑡  ≤  2  𝜋 


$0\le t\le 2\pi $


             ∫  𝐶   ∇  (    𝑥  2     𝑦  3   )  ⋅  d  r  =    𝑥  2     𝑦  3     |    (  1  ,  0  )     (  1  ,  2  𝜋  )    =  8    𝜋  3   −  0  =  8    𝜋  3     


\begin {equation*}\int _C\nabla (x^2y^3)\cdot \D \vr =x^2y^3\big |_{(1,0)}^{(1,2\pi )} =8\pi ^3-0=8\pi ^3\end {equation*}


$C$


   r  (  𝑡  )  =    (            𝑡  3   −  1           𝑡  −    𝑡    −  1        )  


$\vr (t)=\stwovec {t^3-1}{t-t^{-1}}$


   2  ≤  𝑡  ≤  3 


$2\le t\le 3$


             ∫  𝐶    sin     𝑦      d  𝑥   +  𝑥     cos     𝑦      d  𝑦   =    ∫  𝐶   ∇  (  𝑥     sin     𝑦  )  ⋅  d  r  =  𝑥     sin     𝑦    |    (  7  ,    3  2   )     (   26   ,    8  3   )    =   26      sin       8  3   −  7     sin       3  2     


\begin {equation*}\int _C\sin y\,\dx +x\cos y\,\dy =\int _C\nabla (x\sin y)\cdot \D \vr =x\sin y\big |_{(7,\frac 32)}^{(26,\frac 83)} =26\sin \frac 83-7\sin \frac 32\end {equation*}


     ∫    𝐶  𝑖    𝑦      d  𝑥   +  𝑥      d  𝑦  


$\int _{C_i}y\,\dx +x\,\dy $


     𝐶  1  


$C_1$


   (  0  ,  0  ) 


$(0,0)$


   (  1  ,  1  ) 


$(1,1)$


     𝐶  2  


$C_2$


   𝑦  =    𝑥  2  


$y=x^2$


   r  (  𝑡  )  =    (          𝑡           𝑡      )  


$\vr (t)=\stwovec tt$


             ∫    𝐶  1    𝑦      d  𝑥   +  𝑥      d  𝑦   =    ∫  0  1   2  𝑡      d  𝑡   =  1    


\begin {equation*}\int _{C_1}y\,\dx +x\,\dy =\int _0^12t\,\dt =1\end {equation*}


   r  (  𝑡  )  =    (          𝑡             𝑡  2       )  


$\vr (t)=\stwovec t{t^2}$


             ∫    𝐶  2    𝑦      d  𝑥   +  𝑥      d  𝑦   =    ∫  0  1     𝑡  2       d  𝑡   +  2    𝑡  2       d  𝑡   =  1    


\begin {equation*}\int _{C_2}y\,\dx +x\,\dy =\int _0^1t^2\,\dt +2t^2\,\dt =1\end {equation*}


     (          𝑦           𝑥      )   =  ∇  (  𝑥  𝑦  ) 


$\stwovec yx=\nabla (xy)$


             ∫    𝐶  𝑖      (              𝑦        𝑥          )   ⋅  d  r  =    ∫    𝐶  𝑖    ∇  (  𝑥  𝑦  )  ⋅  d  r  =  𝑥  𝑦    |    (  0  ,  0  )     (  1  ,  1  )    =  1    


\begin {equation*}\int _{C_i}\twovec yx\cdot \D \vr =\int _{C_i}\nabla (xy)\cdot \D \vr =xy\bigg |_{(0,0)}^{(1,1)}=1\end {equation*}


   𝑚 


$m$


$C$


   F  =  −  ∇  𝑓 


$\vF =-\nabla f$


$C$


   𝑡 


$t$


$\vr (t)$


   v  (  𝑡  )  =    r  ′   (  𝑡  ) 


$\vv (t)=\vr '(t)$


   𝐾  =    1  2   𝑚        |  v  |   2  


$K=\frac 12m\nm {\vv }^2$


$f$


     ∫  𝐶   F  ⋅  d  r 


$\int _C\vF \cdot \dvr $


   F  =  𝑚  a  =  𝑚    v  ′  


$\vF =m\va =m\vv '$


     d    d  𝑡    v  ⋅  v  =    v  ′   ⋅  v  +  v  ⋅    v  ′   =  2    v  ′   ⋅  v 


$\diff t\vv \cdot \vv =\vv '\cdot \vv +\vv \cdot \vv '=2\vv '\cdot \vv $


             ∫  𝐶   F  ⋅  d  r  =  𝑚    ∫    𝑡  0     𝑡  1      v  ′   (  𝑡  )  ⋅  v  (  𝑡  )      d  𝑡   =  𝑚    ∫    𝑡  0     𝑡  1      d    d  𝑡      1  2         |  v  |   2         d  𝑡   =    1  2   𝑚        |  v  |   2     |    𝑡  0     𝑡  1    =  △  𝐾    


\begin {equation*}\int _C\vF \cdot \D \vr =m\int _{t_0}^{t_1}\vv '(t)\cdot \vv (t)\,\dt =m\int _{t_0}^{t_1}\diff t\frac 12\nm {\vv }^2\,\dt =\frac 12m\nm {\vv }^2\Bigr |_{t_0}^{t_1} =\triangle K\end {equation*}


             ∫  𝐶   F  ⋅  d  r  =  −    ∫  𝐶   ∇  𝑓  ⋅  d  r  =  −  𝑓  (  r  (  𝑡  )  )    |    𝑡  0     𝑡  1    =  −  △  𝑓    


\begin {equation*}\int _C\vF \cdot \D \vr =-\int _C\nabla f\cdot \D \vr =-f\big (\vr (t)\big )\big |_{t_0}^{t_1} =-\triangle f\end {equation*}


   △  𝑓  +  △  𝐾  =  0 


$\triangle f+\triangle K=0$


$\vF =-\nabla f$


     ∫  𝐶   F  ⋅  d  r 


$\int _C\vF \cdot \D \vr $


     ∫  𝐶   F  ⋅  d  r  =    ∫    𝐶  ˆ    F  ⋅  d  r 


$\int _C\vF \cdot \D \vr =\int _{\hat C}\vF \cdot \D \vr $


     𝐶  ˆ  


$\hat C$


$C$


   𝐷 


$D$


$D$


   𝐴  ,  𝐵 


$A,B$


$D$


$D$


$C$


$A,B$


$A,B$


$D$


   𝐷  =  {  (  𝑥  ,  𝑦  )  ∶    𝑥  2   +    𝑦  2   <  1  } 


$D=\big \{(x,y):x^2+y^2<1\big \}$


     𝑥  2   +    𝑦  2   =  1 


$x^2+y^2=1$


$C$


$D$


$\vF $


$D$


$\int _C\vF \cdot \D \vr $


     ∫  𝑆   F  ⋅  d  r  =  0 


$\int _S\vF \cdot \D \vr =0$


   𝑆 


$S$


$D$


$\vF $


$\int _C\vF \cdot \D \vr $


$D$


   (  1  ⇒  2  ) 


$(1\Rightarrow 2)$


$\int _C\vF \cdot \dvr $


$S$


$D$


$A$


$C$


   𝑃 


$P$


$S$


   𝐽 


$J$


$D$


   −  𝐽 


$-J$


             𝐶  1   =  𝐽  ∪  𝑆  ∪  (  −  𝐽  )  ∪  𝐶    


\begin {equation*}C_1=J\cup S\cup (-J)\cup C\end {equation*}


$A,B$


$C$


             ∫  𝐶   F  ⋅  d  r  =    ∫    𝐶  1    F  ⋅  d  r  =    [    ∫  𝐽   +    ∫  𝑆   +    ∫    −  𝐽    +    ∫  𝐶   ]     F  ⋅  d  r  =    ∫  𝑆   F  ⋅  d  r  +    ∫  𝐶   F  ⋅  d  r    


\begin {equation*}\int _C\vF \cdot \dvr =\int _{C_1}\vF \cdot \dvr =\left [\int _J+\int _S+\int _{-J}+\int _C\right ]\vF \cdot \dvr =\int _S\vF \cdot \dvr +\int _C\vF \cdot \dvr \end {equation*}


     ∫    −  𝐽    F  ⋅  d  r  =  −    ∫  𝐽   F  ⋅  d  r 


$\int _{-J}\vF \cdot \dvr =-\int _J\vF \cdot \dvr $


     ∫  𝑆   F  ⋅  d  r  =  0 


$\int _S\vF \cdot \dvr =0$


   (  2  ⇒  3  ) 


$(2\Rightarrow 3)$


$\int _S\vF \cdot \dvr =0$


$D$


$A$


$D$


           𝑓  (  𝑥  ,  𝑦  )  =    ∫  𝐶   F  ⋅  d  r    


\begin {equation*}f(x,y)=\int _C\vF \cdot \D \vr \end {equation*}


$C$


$A$


   (  𝑥  ,  𝑦  ) 


$(x,y)$


     𝐶  ˜  


$\tilde C$


   𝑆  =  𝐶  ∪  (  −    𝐶  ˜   ) 


$S=C\cup (-\tilde C)$


             ∫  𝐶   F  ⋅  d  r  =    (    ∫  𝐶   −    ∫  𝑆   )     F  ⋅  d  r  =    ∫    𝐶  ˜    F  ⋅  d  r      


\begin {align*}\int _C\vF \cdot \D \vr =\left (\int _C-\int _S\right )\vF \cdot \D \vr =\int _{\tilde C}\vF \cdot \D \vr \end {align*}


$f$


   (  1  ⇔  2  ) 


$(1\Leftrightarrow 2)$


$D$


$\vF $


$C$


$f$


$\vF $


$D$


   (    𝑥  1   ,  𝑦  )  ∈  𝐷 


$(x_1,y)\in D$


     𝑥  1   <  𝑥 


$x_1<x$


$C_1$


$A$


   (    𝑥  1   ,  𝑦  ) 


$(x_1,y)$


$C_2$


$(x,y)$


           𝑓  (  𝑥  ,  𝑦  )  =    ∫    𝐶  1    F  ⋅  d  r  +    ∫    𝐶  2    F  ⋅  d  r    


\begin {equation*}f(x,y)=\int _{C_1}\vF \cdot \D \vr +\int _{C_2}\vF \cdot \D \vr \end {equation*}


     𝑥  1  


$x_1$


   𝑥 


$x$


               𝜕  𝑓     𝜕  𝑥    =    𝜕    𝜕  𝑥      ∫    𝐶  2    F  ⋅  d  r    


\begin {equation*}\partials [f]{x}=\partials x\int _{C_2}\vF \cdot \D \vr \end {equation*}


   F  =    (          𝑃           𝑄      )  


$\vF =\stwovec PQ$


$C_2$


   𝑦 


$y$


     d  𝑦   =  0 


$\dy =0$


               𝜕  𝑓     𝜕  𝑥    =    𝜕    𝜕  𝑥      ∫    (    𝑥  1   ,  𝑦  )     (  𝑥  ,  𝑦  )    𝑃      d  𝑥   +  𝑄      d  𝑦   =    𝜕    𝜕  𝑥      ∫    (    𝑥  1   ,  𝑦  )     (  𝑥  ,  𝑦  )    𝑃      d  𝑥   =    d    d  𝑥      ∫    𝑥  1   𝑥   𝑃  (  𝑡  ,  𝑦  )      d  𝑡   =  𝑃  (  𝑥  ,  𝑦  )    


\begin {equation*}\partials [f]{x} =\partials x\int _{(x_1,y)}^{(x,y)}P\,\dx +Q\,\dy =\partials x\int _{(x_1,y)}^{(x,y)}P\,\dx =\diff x\int _{x_1}^xP(t,y)\,\dt =P(x,y)\end {equation*}


   𝑄  (  𝑥  ,  𝑦  )  =      𝜕  𝑓     𝜕  𝑦   


$Q(x,y)=\partials [f]{y}$


   𝑧 


$z$


   F  =  ∇  𝑓 


$\vF =\nabla f$


   (  3  ⇒  1  ) 


$(3\Rightarrow 1)$


       ∫    𝐶  𝑖      (          2  𝑦           𝑥      )   ⋅  d  r  


$\smash {\int _{C_i}\stwovec {2y}{x}\cdot \D \vr }$


   (  0  ,  0  )  →  (  1  ,  1  ) 


$(0,0)\to (1,1)$


$y=x^2$


$\vr (t)=\stwovec tt$


             ∫    𝐶  1    2  𝑦      d  𝑥   +  𝑥      d  𝑦   =    ∫  0  1   3  𝑡      d  𝑡   =    3  2     


\begin {equation*}\int _{C_1}2y\,\dx +x\,\dy =\int _0^13t\,\dt =\frac 32\end {equation*}


$\vr (t)=\stwovec t{t^2}$


             ∫    𝐶  2    2  𝑦      d  𝑥   +  𝑥      d  𝑦   =    ∫  0  1   2    𝑡  2   +  2    𝑡  2       d  𝑡   =    4  3   ≠    3  2     


\begin {equation*}\int _{C_2}2y\,\dx +x\,\dy =\int _0^12t^2+2t^2\,\dt =\frac 43\neq \frac 32\end {equation*}


       ∫    𝐶  2    <    ∫    𝐶  1    


$\smash {\int _{C_2}<\int _{C_1}}$


   F  =    (          2  𝑦           𝑥      )  


$\vF =\stwovec {2y}x$


$\vF $


$D$


$D$


$D$


$C$


$\vF =\stwovec PQ$


$D$


$\vF $


       𝜕  𝑄     𝜕  𝑥    =      𝜕  𝑃     𝜕  𝑦   


$\partials [Q]{x}=\partials [P]{y}$


$D$


$\partials [Q]{x}=\partials [P]{y}$


$\vF $


   F  =  ∇  𝑓  =    (            𝑓  𝑥              𝑓  𝑦       )  


$\vF =\nabla f=\stwovec {f_x}{f_y}$


     𝑄  𝑥   =    𝑓    𝑦  𝑥    =    𝑓    𝑥  𝑦    =    𝑃  𝑦  


$Q_x=f_{yx}=f_{xy}=P_y$


$\vF =\stwovec {2y}x$


     𝜕    𝜕  𝑥    𝑥  =  1  ≠  2  =    𝜕    𝜕  𝑦    (  2  𝑦  ) 


$\partials xx=1\neq 2=\partials y(2y)$


   F  =    (          2  𝑥  𝑦             𝑥  2       )  


$\vF =\stwovec {2xy}{x^2}$


   𝐷  =    ℝ  2  


$D=\R ^2$


     ℝ  2  


$\R ^2$


               𝜕  𝑄     𝜕  𝑥    =  2  𝑥  =      𝜕  𝑃     𝜕  𝑦      ⟹    F    is conservative     


\begin {equation*}\partials [Q]{x}=2x=\partials [P]{y}\implies \vF \text { is conservative}\end {equation*}


$f$


             𝑓  𝑥   =  𝑃  =  2  𝑥  𝑦    ⟹    𝑓  (  𝑥  ,  𝑦  )  =    𝑥  2   𝑦  +  𝑔  (  𝑦  )            𝑓  𝑦   =  𝑄  =    𝑥  2     ⟹    𝑓  (  𝑥  ,  𝑦  )  =    𝑥  2   𝑦  +  ℎ  (  𝑥  )    


\begin {gather*}f_x=P=2xy\implies f(x,y)=x^2y+g(y)\\ f_y=Q=x^2\implies f(x,y)=x^2y+h(x)\end {gather*}


   𝑔  ,  ℎ 


$g,h$


   𝑔  (  𝑦  )  =  ℎ  (  𝑥  )  =  𝑐 


$g(y)=h(x)=c$


   𝑓  (  𝑥  ,  𝑦  )  =    𝑥  2   𝑦  +  𝑐 


$f(x,y)=x^2y+c$


     ∫  𝐶   2  𝑥  𝑦      d  𝑥   +    𝑥  2       d  𝑦   =  0 


$\int _C2xy\,\dx +x^2\,\dy =0$


$S$


   F  =  𝑃  i  +  𝑄  j  +  𝑅  k 


$\vF =P\vi +Q\vj +R\vk $


   𝐸  ⊆    ℝ  3  


$E\subseteq \R ^3$


   𝑃  ,  𝑄  ,  𝑅 


$P,Q,R$


$\vF $


               𝜕  𝑄     𝜕  𝑥    =      𝜕  𝑃     𝜕  𝑦    ,        𝜕  𝑅     𝜕  𝑦    =      𝜕  𝑄     𝜕  𝑧       and         𝜕  𝑃     𝜕  𝑧    =      𝜕  𝑅     𝜕  𝑥      


\begin {equation*}\partials [Q]{x}=\partials [P]{y},\qquad \partials [R]{y}=\partials [Q]{z}\quad \text {and}\quad \partials [P]{z}=\partials [R]{x}\end {equation*}


   F  =    (          𝑃           𝑄      )   =    1      𝑥  2   +    𝑦  2         (          −  𝑦           𝑥      )  


$\vF =\stwovec PQ=\frac 1{x^2+y^2}\stwovec {-y}x$


$\vF $


   r  (  𝑡  )  =    (           cos     𝑡            sin     𝑡      )   ,    0  ≤  𝑡  ≤  2  𝜋 


$\vr (t)=\stwovec {\cos t}{\sin t},\ 0\le t\le 2\pi $


             ∫  𝐶   F  ⋅  d  r  =    ∫  0    2  𝜋      (              −   sin     𝑡         cos     𝑡          )   ⋅    (              −   sin     𝑡         cos     𝑡          )         d  𝑡   =  2  𝜋    


\begin {equation*}\int _C\vF \cdot \D \vr =\int _0^{2\pi }\twovec {-\sin t}{\cos t}\cdot \twovec {-\sin t}{\cos t}\,\dt =2\pi \end {equation*}


     ∫  𝐶   F  ⋅    d  𝑟   ≠  0 


$\int _C\vF \cdot \dr \neq 0$


$\vF $


               𝜕  𝑄     𝜕  𝑥    =        𝑦  2   −    𝑥  2      (    𝑥  2   +    𝑦  2     )  2     =      𝜕  𝑃     𝜕  𝑦      


\begin {equation*}\partials [Q]{x} =\frac {y^2-x^2}{(x^2+y^2)^2} =\partials [P]{y}\end {equation*}


$\vF $


$D$


   𝐷  =    ℝ  2   ∖  {  (  0  ,  0  )  } 


$D=\R ^2\setminus \{(0,0)\}$


$D$


     𝑄  𝑥   =    𝑃  𝑦  


$Q_x=P_y$


$D$


$D$


$x$


           𝐷  =    ℝ  2   ∖  {  (  𝑥  ,  0  )  ∶  𝑥  ≥  0  }    


\begin {equation*}D=\R ^2\setminus \big \{(x,0):x\ge 0\big \}\end {equation*}


$\vF $


     ∫  𝐶   F  ⋅  d  r  =  0 


$\int _C\vF \cdot \D \vr =0$


$D$


$D$


$\vF $


$D$


   𝑓  =  𝜃 


$f=\theta $


           𝑓  (  𝑥  ,  𝑦  )  =    {               tan     −  1        𝑦  𝑥           𝑦  >  0        𝜋          𝑦  =  0        𝜋  +     tan     −  1        𝑦  𝑥           𝑦  <  0             


\begin {equation*}f(x,y)= \begin {cases} \tan ^{-1}\frac yx&y>0\\ \pi &y=0\\ \pi +\tan ^{-1}\frac yx&y<0 \end {cases}\end {equation*}


   𝜃 


$\theta $


$x$


   F  (  𝑥  ,  𝑦  )  =  𝑃  i  +  𝑄  j 


$\vF (x,y)=P\vi +Q\vj $


   𝐷  ⊆    ℝ  2  


$D\subseteq \R ^2$


   𝑃  ,  𝑄 


$P,Q$


$\vF $


   =  ∇  𝑓 


$=\nabla f$


$f$


$\int _C\vF \cdot \D \vr $


$C$


$D$


$\int _C\vF \cdot \D \vr =0$


$C$


$D$


$D$


$\partials [Q]{x}=\partials [P]{y}$


$\vF =P\vi +Q\vj +R\vk $


$E\subseteq \R ^3$


               𝜕  𝑄     𝜕  𝑥    =      𝜕  𝑃     𝜕  𝑦    ,        𝜕  𝑅     𝜕  𝑦    =      𝜕  𝑄     𝜕  𝑧    ,        𝜕  𝑃     𝜕  𝑧    =      𝜕  𝑅     𝜕  𝑥      


\begin {equation*}\partials [Q]{x}=\partials [P]{y},\quad \partials [R]{y}=\partials [Q]{z},\quad \partials [P]{z}=\partials [R]{x}\end {equation*}


Path Independence

The Fundamental Theorem has an amazing interpretation: line integrals in con-
servative vector fields depend only on a curve’s endpoints. We’d like to turn this
idea on its head. Does a line integral (or integrals?) being independent of path
require a vector field to be conservative?

This discussion is lengthy and tricky, but very important.

Definition. A line integral [ F - dr is independent of path if [.F-dr = [ F-dr for all curves C with the
same endpoints as C.

Before stating the relevant theorem, we need a few terms form basic topology.

Definition. 1. A curve is closed if it starts and finishes at the same point.

2. Let D be a region: for us, this means a subset of either the plane or 3D space. We say that D is:

(a) Open if it contains none of its boundary points.
(b) (Path-)Connected if every pair of points A, B in D can be joined by a curve lying entirely in D.

/_\
A Q C ﬁ (
A closed curve An open region in the plane A not-open region in the plane

A connected region: C joins points A, B A disconnected region: we cannot join
A, B with a curve lying entirely in D

For instance, the inside of the unit disk D = {(x,y) : x2 + yz < 1} is both connected and open. Its
boundary curve (the circle x? + y? = 1) is closed.

Theorem. Let C be a curve in an open connected region D and F a continuous vector field on D. The following
statements are equivalent (mean the same thing):

1. [-F-dris independent of path.

2. [F-dr =0 for every closed curve S in D.

3. F is conservative.

Read the statement carefully: if even one line integral | c F - dris independent of path, then all line
integrals over all curves in D are independent of path. Path-independence has doesn’t depend on paths
at all: it is a property of the vector field.



Proof. We prove the theorem in three stages.

(1= 2) Suppose | c F - dris independent of path and let S be a closed curve.

Since D is connected, we may join the starting point A of C to some
fixed point P on S by a curve | lying in D. Writing —] for the same
curve travelled in reverse, we see that the composite curve

C;=JuSu(-HucC

has the same endpoints (A, B) as C. By path-independence,

Jorae= | pae={] <o),

since f_]F dr = — f]F -dr. We conclude that [ F-dr = 0.

F-dr:J‘F-dr+I F-dr
S C

(2 = 3) Assume fs F - dr = 0 around every closed curve in D. Choose any point A in D and define

fx,y) :'[ F-dr
C

where C is any curve joining A to (x,y). If C is another curve with A
the same endpoints, then S = CU (—C) is a closed curve, whence

[raem ([ o= v D

The function f is therefore independentﬂ of the choice of path C. We
claim that f is a potential function for F.

Since D is open, there exists (x1,y) € D such that x; < x. Let C;
join A to (xq,y), and C, be the line segment thence to (x,y). Then A G

f(x,y):J‘ F-dr+j F.dr
C

(x1,y)  (xy)

Since x4 is a constant, the first integral is independent of x and so D

9
_f:ij F-dr
dx  ox Jc,

Write F = ( 5 ) Along C, we have y constant, hence dy = 0. Therefore

of o Wy o (W d r*
a_ﬁj( de+Qdy—$I de—aj P(t,y)dt = P(x,y)
X1Y) (x1,Y) 1

X

by the Fundamental Theorem of Calculus. A similar argument shows that Q(x,y) = g—j; (in3Da
z-argument is also needed). Putting this together we see that F = Vf is conservative.

(3 = 1) This is simply the Fundamental Theorem of Line Integrals.

This (and the first part) show that (1 < 2) even without the assumptions about D being open and F continuous.
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Example We evaluate the line integrals | , (2Y) - dr over the line (0,0) — (1,1) and the parabola

y = x> between the same two points.
For the first curve, r(t) = (}) produces e oo S
L — " V7 e
1 3 Ll > > > » ¥ - x
j 2ydx+xdy:j 3tdt:§ e e e pr f o)A A
1 0 e - - » ~ PV v 4
L - - ” C Y
For the second curve, 1(t) = ( ) yields N N A eI
. R A
1
4 3 0 P S S S ?
2ydx +xd =j 202 4 212dt = £ # =
Lz 4 7= 372 0 1%

The relative strengths of the arrows along each curve should make it clear why fC < fC The fact
that these integrals have different values says that F = (2Y ) is not conservative.

Simple-Connectedness: When is F conservative?

Searching for a potential function can be a lot of work. It is useful to know if a vector field is conservative
before you start looking. This discussion requires one more topological concept.

Definition. A connected region D is simply-connected if every closed curve in D may be shrunk to a

point without leaving D.

Not simply-connected: cannot shrink C to a point

Simply-connected: any closed curve may
due to the ‘hole’ in the region

be shrunk to a point

Theorem. Suppose F = ( 5 ) has continuous partial derivatives on a domain D.

9Q _ 9P
1. If F is conservative, then 2= = =5

2. If D is simply-connected and g—f = ‘3—1;, then F is conservative.

Proof. 1. Suppose F = Vf = ( ) Then Q, =fx =foy =P

2. This will follow quickly from Green’s Theorem (next section).

Examples 1. F = (2xy ) is not conservative (on any domain) because a%x =1+#2= a—y(Zy).



2. Find a potential function, if there is one, for the vector field on F = ( 2;<:2y ) onD = R2.

You can dive straight in to the computation, but it is helpful to use the Theorem first so that you
don’t waste time. Since R? is simply-connected,

2Q oP . :

— =2x = — = Fis conservative

ox dy
Now that we know a potential function f exists, we can solve for it:

fe=P=2xy = flxy) =22y +3(y

fy=Q=x = f(x,y) = 2%y +h(x)
for unknown functions g, h. Choosing g(y) = h(x) = c (constant) yields all possible potential
functions f (x,y) = x%y + c.
From this, it follows that [ c2xydx + x?>dy = 0 around any closed curve S.

What changes in 3D? Essentially nothing!

Simple-connectedness means the same thing. For example, a solid
torus is non-simply-connected since a curve can be drawn inside it
which cannot be shrunk to a point.

The primary difference is that the relevant Theorem has three condi-
tions, corresponding to the three pairs of mixed partial derivatives...

Theorem. Suppose F = Pi + Qj + Rk is a vector field on a simply-connected region E C R3, and that P,Q, R
have continuous partial derivatives. Then F is conservative if and only if

9Q_9 9R_2Q 9P R
ox  dy’ dy 0z M T o

This isn’t so useful to us and will be much easier to remember once we’ve introduced curl later on...
Does Simple-Connectedness Really Matter? Yes!
To see why, consider applying our analysis to the vector field F = ( 5 ) = x21Ty2 ().

1. Calculate the line integral of F around the unit circle:

r(t) = ($51),0<t<2m

sint

2T/ _gint —sint
LF-dr:L (cost)(cost)dt:zn

Since fC F - dr # 0, we believe that F is non-conservative.

2. However, the partial derivatives are equal
Q y? — x2 oP

I @24y

We therefore want to say that F is conservative.

One of these arguments must be false, but which? The answer depends on whether our domain is
simply-connected. A full argument requires Green’s Theorem, but we can see the shape of it already...


http://www.math.uci.edu/~ndonalds/math2e/notes-pics/16-3-torus.html

Case 1: D encircles the origin Suppose that D = R2\ {(0,0)} is the punctured plane (without the
origin). Such a domain D is not simply-connected. Indeed the unit circle cannot be shrunk to a
point. The Q, = P, doesn’t allow us to conclude anything. Argument 1 is correct and the vector
field is non-conservative on D.

Case 2: D is simply-connected For instance, we could exclude the positive x-axis and let

D = R?\ {(x,0) : x > 0} <<::>

Now argument 2 is correct: F is conservative and fC F-dr=0 2 T . D

around every closed curve in D. / \

In the picture, line integrals round the solid curves are zero; ‘\ K X
the unit circle does not lie in D. A suitable potential function A 7

for Fon D is f = 6 (the polar-angle):

tan_1¥ y>0
fy) =4m y=0
7T+tan_1¥ y<0

The problem in extending this potential function to the entire punctured plane is that 6 is not
continuous everywhere. Indeed it is typically taken to be discontinuous on the positive x-axis!

Summary

If F(x,y) = Pi+ Qj is defined on an open connected region D C R2, where P, Q have continuous first
derivatives, then the following are equivalent:

1. Fis conservative (= Vf for some potential function f).
2. fc F . dr is independent of path for any curve C in D.
3. fc F - dr = 0 for every piecewise smooth closed curve C in D.

4. In addition, if D is simply-connected, then 3—Q = 9P
X dy

If F = Pi + Qj + Rk on a volume E C R3 then the fifth condition becomes

90 9P R _9Q 9P oR
ox dy’ dy 9z 9dz ox





