
16.3 The Fundamental Theorem of Line Integrals

The Fundamental Theorem of Calculus says that we may evaluate the integral of a derivative simply 
by knowing the values of the function at the endpoints of the interval of integration:

∫
𝑏

𝑎
𝑓 ′(𝑥) d𝑥 = 𝑓 (𝑏) − 𝑓 (𝑎)

The Fundamental Theorem of Line Integrals is an analogue of this for multi-variable functions.

Theorem  (Fundamental Theorem of Line Integrals). Suppose that 𝐶 is a smooth curve from points 𝐴 to 
𝐵 parametrized by r(𝑡) for 𝑎 ≤ 𝑡 ≤ 𝑏. Let 𝑓  be a differentiable function whose domain includes 𝐶 and whose 
gradient vector ∇𝑓  is continuous on 𝐶. Then

∫
𝐶

∇𝑓 ⋅ dr = 𝑓 (r(𝑏)) − 𝑓 (r(𝑎)) = 𝑓 (𝐵) − 𝑓 (𝐴)

Alternatively: if F is a continuous conservative vector field with potential function 𝑓  then

∫
𝐶

F ⋅ dr = 𝑓 (end of 𝐶) − 𝑓 (start of 𝐶)

A line integral in a conservative vector field is independent of path: its value depends only on the 
endpoints of the curve, not on the path between them. This idea is really important and we’ll return to 
it shortly.
The long caveats about differentiability and continuity in the Theorem’s statement are merely so that 
the original Fundamental Theorem of Calculus can be invoked in the proof.

Proof. (𝑛 = 2 or 3 for the purposes of this course)

∫
𝐶

∇𝑓 ⋅ dr = ∫
𝐶

⎛⎜⎜⎜
⎝

𝑓𝑥1
⋮

𝑓𝑥𝑛

⎞⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜
⎝

d𝑥1
⋮

d𝑥𝑛

⎞⎟⎟⎟
⎠

= ∫
𝐶

𝜕𝑓
𝜕𝑥1

d𝑥1 + ⋯ +
𝜕𝑓

𝜕𝑥𝑛
d𝑥𝑛

= ∫
𝑏

𝑎
(

𝜕𝑓
𝜕𝑥1

d𝑥1
d𝑡 + ⋯ +

𝜕𝑓
𝜕𝑥𝑛

d𝑥𝑛
d𝑡 ) d𝑡

= ∫
𝑏

𝑎

d
d𝑡 𝑓 (𝑥1(𝑡), … , 𝑥𝑛(𝑡))d𝑡 = ∫

𝑏

𝑎

d
d𝑡 𝑓 (r(𝑡))d𝑡 (chain rule)

= 𝑓 (r(𝑏)) − 𝑓 (r(𝑎))

where we applied FTC in the final step.

Examples 1. Let 𝐶 be the curve parametrized by r(𝑡) = ( 1+sin2 𝑡
𝑡+sin 𝑡 ) for 0 ≤ 𝑡 ≤ 2𝜋. Then

∫
𝐶

∇(𝑥2𝑦3) ⋅ dr = 𝑥2𝑦3∣(1,2𝜋)
(1,0) = 8𝜋3 − 0 = 8𝜋3
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2. Let 𝐶 be parametrized by r(𝑡) = ( 𝑡3−1
𝑡−𝑡−1 ) for 2 ≤ 𝑡 ≤ 3. Then

∫
𝐶

sin 𝑦 d𝑥 + 𝑥 cos 𝑦 d𝑦 = ∫
𝐶

∇(𝑥 sin 𝑦) ⋅ dr = 𝑥 sin 𝑦∣(26, 8
3 )

(7, 3
2 )

= 26 sin
8
3 − 7 sin

3
2

3. Evaluate the line integrals ∫𝐶𝑖
𝑦 d𝑥 + 𝑥 d𝑦 where 𝐶1 is the straight line from (0, 0) and (1, 1), and 

𝐶2 is the parabola 𝑦 = 𝑥2 between the same points.

We may parametrize the first curve r(𝑡) = ( 𝑡
𝑡 ), so

∫
𝐶1

𝑦 d𝑥 + 𝑥 d𝑦 = ∫
1

0
2𝑡 d𝑡 = 1

For the second r(𝑡) = ( 𝑡
𝑡2 ), so

∫
𝐶2

𝑦 d𝑥 + 𝑥 d𝑦 = ∫
1

0
𝑡2 d𝑡 + 2𝑡2 d𝑡 = 1 0

1
y

0 1

C2

C1

x

We expected the two solutions to be the same since ( 𝑦
𝑥 ) = ∇(𝑥𝑦) is conservative. We could 

instead simply have applied the Fundamental Theorem:

∫
𝐶𝑖

(𝑦
𝑥) ⋅ dr = ∫

𝐶𝑖

∇(𝑥𝑦) ⋅ dr = 𝑥𝑦∣
(1,1)

(0,0)
= 1

Conservation of Energy

The terminology we use (conservative, potential, etc.) all comes from Physics.
Suppose that a particle of mass 𝑚 follows a path 𝐶 through a conservative force field F = −∇𝑓 .
Parametrize 𝐶 so that the particle is at time 𝑡 its position is r(𝑡) and its velocity is v(𝑡) = r′(𝑡).
The particle has kinetic energy 𝐾 = 1

2𝑚 |v|2 and is said to have potential energy 𝑓 .
We evaluate the line integral ∫𝐶 F ⋅ dr in two ways:

1. Newton’s second law (F = 𝑚a = 𝑚v′) says that1

∫
𝐶

F ⋅ dr = 𝑚 ∫
𝑡1

𝑡0

v′(𝑡) ⋅ v(𝑡) d𝑡 = 𝑚 ∫
𝑡1

𝑡0

d
d𝑡

1
2 |v|2 d𝑡 =

1
2𝑚 |v|2∣

𝑡1

𝑡0
= △𝐾

is the change in kinetic energy over the path.

2. By the Fundamental Theorem,

∫
𝐶

F ⋅ dr = − ∫
𝐶

∇𝑓 ⋅ dr = −𝑓 (r(𝑡))∣𝑡1
𝑡0

= −△𝑓

is negative the change in potential energy of the particle over the path.

We conclude that △𝑓 + △𝐾 = 0: total energy is conserved. This is why potential functions in Physics 
tend to have a negative sign: F = −∇𝑓  (in mathematics, we omit the negative).

1By the product rule, d
d𝑡 v ⋅ v = v′ ⋅ v + v ⋅ v′ = 2v′ ⋅ v.
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             ∫  𝑎  𝑏     𝑓  ′   (  𝑥  )      d  𝑥   =  𝑓  (  𝑏  )  −  𝑓  (  𝑎  )    


\begin {equation*}\int _a^bf'(x)\,\dx =f(b)-f(a)\end {equation*}


   𝐶 


$C$


   𝐴 


$A$


   𝐵 


$B$


   r  (  𝑡  ) 


$\vr (t)$


   𝑎  ≤  𝑡  ≤  𝑏 


$a\le t\le b$


   𝑓 


$f$


$C$


   ∇  𝑓 


$\nabla f$


$C$


             ∫  𝐶   ∇  𝑓  ⋅  d  r  =  𝑓  (  r  (  𝑏  )  )  −  𝑓  (  r  (  𝑎  )  )  =  𝑓  (  𝐵  )  −  𝑓  (  𝐴  )    


\begin {equation*}\int _C\nabla f\cdot \D \vr =f(\vr (b))-f(\vr (a))=f(B)-f(A)\end {equation*}


   F 


$\vF $


$f$


             ∫  𝐶   F  ⋅  d  r  =  𝑓  (   end of    𝐶  )  −  𝑓  (   start of    𝐶  )    


\begin {equation*}\int _C\vF \cdot \D \vr =f(\text {end of }C)-f(\text {start of }C)\end {equation*}


   𝑛  =  2 


$n=2$


   3 


$3$


             ∫  𝐶   ∇  𝑓  ⋅  d  r     =    ∫  𝐶     (                𝑓    𝑥  1          ⋮          𝑓    𝑥  𝑛            )   ⋅    (                  d  𝑥   1         ⋮            d  𝑥   𝑛           )   =    ∫  𝐶       𝜕  𝑓     𝜕    𝑥  1         d  𝑥   1   +  ⋯  +      𝜕  𝑓     𝜕    𝑥  𝑛         d  𝑥   𝑛             =    ∫  𝑎  𝑏     (      𝜕  𝑓     𝜕    𝑥  1         d    𝑥  1      d  𝑡    +  ⋯  +      𝜕  𝑓     𝜕    𝑥  𝑛         d    𝑥  𝑛      d  𝑡    )       d  𝑡          (chain rule)        =    ∫  𝑎  𝑏     d    d  𝑡    𝑓  (    𝑥  1   (  𝑡  )  ,  …  ,    𝑥  𝑛   (  𝑡  )  )    d  𝑡   =    ∫  𝑎  𝑏     d    d  𝑡    𝑓  (  r  (  𝑡  )  )    d  𝑡             =  𝑓  (  r  (  𝑏  )  )  −  𝑓  (  r  (  𝑎  )  )    


\begin {align*}\int _C\nabla f\cdot \D \vr &=\int _C\threevec {f_{x_1}}{\vdots }{f_{x_n}}\cdot \threevec {\dx _1}{\vdots }{\dx _n} =\int _C\partials [f]{x_1}\dx _1+\cdots +\partials [f]{x_n}\dx _n\\ &=\int _a^b\left (\partials [f]{x_1}\diff [x_1]{t}+\cdots +\partials [f]{x_n}\diff [x_n]{t}\right )\dt \\ &=\int _a^b\diff tf(x_1(t),\ldots ,x_n(t))\dt =\int _a^b\diff tf(\vr (t))\dt \tag {chain rule}\\ &=f\big (\vr (b)\big )-f\big (\vr (a)\big )\end {align*}


$C$


   r  (  𝑡  )  =    (          1  +     sin   2     𝑡           𝑡  +   sin     𝑡      )  


$\vr (t)=\stwovec {1+\sin ^2t}{t+\sin t}$


   0  ≤  𝑡  ≤  2  𝜋 


$0\le t\le 2\pi $


             ∫  𝐶   ∇  (    𝑥  2     𝑦  3   )  ⋅  d  r  =    𝑥  2     𝑦  3     |    (  1  ,  0  )     (  1  ,  2  𝜋  )    =  8    𝜋  3   −  0  =  8    𝜋  3     


\begin {equation*}\int _C\nabla (x^2y^3)\cdot \D \vr =x^2y^3\big |_{(1,0)}^{(1,2\pi )} =8\pi ^3-0=8\pi ^3\end {equation*}


$C$


   r  (  𝑡  )  =    (            𝑡  3   −  1           𝑡  −    𝑡    −  1        )  


$\vr (t)=\stwovec {t^3-1}{t-t^{-1}}$


   2  ≤  𝑡  ≤  3 


$2\le t\le 3$


             ∫  𝐶    sin     𝑦      d  𝑥   +  𝑥     cos     𝑦      d  𝑦   =    ∫  𝐶   ∇  (  𝑥     sin     𝑦  )  ⋅  d  r  =  𝑥     sin     𝑦    |    (  7  ,    3  2   )     (   26   ,    8  3   )    =   26      sin       8  3   −  7     sin       3  2     


\begin {equation*}\int _C\sin y\,\dx +x\cos y\,\dy =\int _C\nabla (x\sin y)\cdot \D \vr =x\sin y\big |_{(7,\frac 32)}^{(26,\frac 83)} =26\sin \frac 83-7\sin \frac 32\end {equation*}


     ∫    𝐶  𝑖    𝑦      d  𝑥   +  𝑥      d  𝑦  


$\int _{C_i}y\,\dx +x\,\dy $


     𝐶  1  


$C_1$


   (  0  ,  0  ) 


$(0,0)$


   (  1  ,  1  ) 


$(1,1)$


     𝐶  2  


$C_2$


   𝑦  =    𝑥  2  


$y=x^2$


   r  (  𝑡  )  =    (          𝑡           𝑡      )  


$\vr (t)=\stwovec tt$


             ∫    𝐶  1    𝑦      d  𝑥   +  𝑥      d  𝑦   =    ∫  0  1   2  𝑡      d  𝑡   =  1    


\begin {equation*}\int _{C_1}y\,\dx +x\,\dy =\int _0^12t\,\dt =1\end {equation*}


   r  (  𝑡  )  =    (          𝑡             𝑡  2       )  


$\vr (t)=\stwovec t{t^2}$


             ∫    𝐶  2    𝑦      d  𝑥   +  𝑥      d  𝑦   =    ∫  0  1     𝑡  2       d  𝑡   +  2    𝑡  2       d  𝑡   =  1    


\begin {equation*}\int _{C_2}y\,\dx +x\,\dy =\int _0^1t^2\,\dt +2t^2\,\dt =1\end {equation*}


     (          𝑦           𝑥      )   =  ∇  (  𝑥  𝑦  ) 


$\stwovec yx=\nabla (xy)$


             ∫    𝐶  𝑖      (              𝑦        𝑥          )   ⋅  d  r  =    ∫    𝐶  𝑖    ∇  (  𝑥  𝑦  )  ⋅  d  r  =  𝑥  𝑦    |    (  0  ,  0  )     (  1  ,  1  )    =  1    


\begin {equation*}\int _{C_i}\twovec yx\cdot \D \vr =\int _{C_i}\nabla (xy)\cdot \D \vr =xy\bigg |_{(0,0)}^{(1,1)}=1\end {equation*}


   𝑚 


$m$


$C$


   F  =  −  ∇  𝑓 


$\vF =-\nabla f$


$C$


   𝑡 


$t$


$\vr (t)$


   v  (  𝑡  )  =    r  ′   (  𝑡  ) 


$\vv (t)=\vr '(t)$


   𝐾  =    1  2   𝑚        |  v  |   2  


$K=\frac 12m\nm {\vv }^2$


$f$


     ∫  𝐶   F  ⋅  d  r 


$\int _C\vF \cdot \dvr $


   F  =  𝑚  a  =  𝑚    v  ′  


$\vF =m\va =m\vv '$


     d    d  𝑡    v  ⋅  v  =    v  ′   ⋅  v  +  v  ⋅    v  ′   =  2    v  ′   ⋅  v 


$\diff t\vv \cdot \vv =\vv '\cdot \vv +\vv \cdot \vv '=2\vv '\cdot \vv $


             ∫  𝐶   F  ⋅  d  r  =  𝑚    ∫    𝑡  0     𝑡  1      v  ′   (  𝑡  )  ⋅  v  (  𝑡  )      d  𝑡   =  𝑚    ∫    𝑡  0     𝑡  1      d    d  𝑡      1  2         |  v  |   2         d  𝑡   =    1  2   𝑚        |  v  |   2     |    𝑡  0     𝑡  1    =  △  𝐾    


\begin {equation*}\int _C\vF \cdot \D \vr =m\int _{t_0}^{t_1}\vv '(t)\cdot \vv (t)\,\dt =m\int _{t_0}^{t_1}\diff t\frac 12\nm {\vv }^2\,\dt =\frac 12m\nm {\vv }^2\Bigr |_{t_0}^{t_1} =\triangle K\end {equation*}


             ∫  𝐶   F  ⋅  d  r  =  −    ∫  𝐶   ∇  𝑓  ⋅  d  r  =  −  𝑓  (  r  (  𝑡  )  )    |    𝑡  0     𝑡  1    =  −  △  𝑓    


\begin {equation*}\int _C\vF \cdot \D \vr =-\int _C\nabla f\cdot \D \vr =-f\big (\vr (t)\big )\big |_{t_0}^{t_1} =-\triangle f\end {equation*}


   △  𝑓  +  △  𝐾  =  0 


$\triangle f+\triangle K=0$


$\vF =-\nabla f$


     ∫  𝐶   F  ⋅  d  r 


$\int _C\vF \cdot \D \vr $


     ∫  𝐶   F  ⋅  d  r  =    ∫    𝐶  ˆ    F  ⋅  d  r 


$\int _C\vF \cdot \D \vr =\int _{\hat C}\vF \cdot \D \vr $


     𝐶  ˆ  


$\hat C$


$C$


   𝐷 


$D$


$D$


   𝐴  ,  𝐵 


$A,B$


$D$


$D$


$C$


$A,B$


$A,B$


$D$


   𝐷  =  {  (  𝑥  ,  𝑦  )  ∶    𝑥  2   +    𝑦  2   <  1  } 


$D=\big \{(x,y):x^2+y^2<1\big \}$


     𝑥  2   +    𝑦  2   =  1 


$x^2+y^2=1$


$C$


$D$


$\vF $


$D$


$\int _C\vF \cdot \D \vr $


     ∫  𝑆   F  ⋅  d  r  =  0 


$\int _S\vF \cdot \D \vr =0$


   𝑆 


$S$


$D$


$\vF $


$\int _C\vF \cdot \D \vr $


$D$


   (  1  ⇒  2  ) 


$(1\Rightarrow 2)$


$\int _C\vF \cdot \dvr $


$S$


$D$


$A$


$C$


   𝑃 


$P$


$S$


   𝐽 


$J$


$D$


   −  𝐽 


$-J$


             𝐶  1   =  𝐽  ∪  𝑆  ∪  (  −  𝐽  )  ∪  𝐶    


\begin {equation*}C_1=J\cup S\cup (-J)\cup C\end {equation*}


$A,B$


$C$


             ∫  𝐶   F  ⋅  d  r  =    ∫    𝐶  1    F  ⋅  d  r  =    [    ∫  𝐽   +    ∫  𝑆   +    ∫    −  𝐽    +    ∫  𝐶   ]     F  ⋅  d  r  =    ∫  𝑆   F  ⋅  d  r  +    ∫  𝐶   F  ⋅  d  r    


\begin {equation*}\int _C\vF \cdot \dvr =\int _{C_1}\vF \cdot \dvr =\left [\int _J+\int _S+\int _{-J}+\int _C\right ]\vF \cdot \dvr =\int _S\vF \cdot \dvr +\int _C\vF \cdot \dvr \end {equation*}


     ∫    −  𝐽    F  ⋅  d  r  =  −    ∫  𝐽   F  ⋅  d  r 


$\int _{-J}\vF \cdot \dvr =-\int _J\vF \cdot \dvr $


     ∫  𝑆   F  ⋅  d  r  =  0 


$\int _S\vF \cdot \dvr =0$


   (  2  ⇒  3  ) 


$(2\Rightarrow 3)$


$\int _S\vF \cdot \dvr =0$


$D$


$A$


$D$


           𝑓  (  𝑥  ,  𝑦  )  =    ∫  𝐶   F  ⋅  d  r    


\begin {equation*}f(x,y)=\int _C\vF \cdot \D \vr \end {equation*}


$C$


$A$


   (  𝑥  ,  𝑦  ) 


$(x,y)$


     𝐶  ˜  


$\tilde C$


   𝑆  =  𝐶  ∪  (  −    𝐶  ˜   ) 


$S=C\cup (-\tilde C)$


             ∫  𝐶   F  ⋅  d  r  =    (    ∫  𝐶   −    ∫  𝑆   )     F  ⋅  d  r  =    ∫    𝐶  ˜    F  ⋅  d  r      


\begin {align*}\int _C\vF \cdot \D \vr =\left (\int _C-\int _S\right )\vF \cdot \D \vr =\int _{\tilde C}\vF \cdot \D \vr \end {align*}


$f$


   (  1  ⇔  2  ) 


$(1\Leftrightarrow 2)$


$D$


$\vF $


$C$


$f$


$\vF $


$D$


   (    𝑥  1   ,  𝑦  )  ∈  𝐷 


$(x_1,y)\in D$


     𝑥  1   <  𝑥 


$x_1<x$


$C_1$


$A$


   (    𝑥  1   ,  𝑦  ) 


$(x_1,y)$


$C_2$


$(x,y)$


           𝑓  (  𝑥  ,  𝑦  )  =    ∫    𝐶  1    F  ⋅  d  r  +    ∫    𝐶  2    F  ⋅  d  r    


\begin {equation*}f(x,y)=\int _{C_1}\vF \cdot \D \vr +\int _{C_2}\vF \cdot \D \vr \end {equation*}


     𝑥  1  


$x_1$


   𝑥 


$x$


               𝜕  𝑓     𝜕  𝑥    =    𝜕    𝜕  𝑥      ∫    𝐶  2    F  ⋅  d  r    


\begin {equation*}\partials [f]{x}=\partials x\int _{C_2}\vF \cdot \D \vr \end {equation*}


   F  =    (          𝑃           𝑄      )  


$\vF =\stwovec PQ$


$C_2$


   𝑦 


$y$


     d  𝑦   =  0 


$\dy =0$


               𝜕  𝑓     𝜕  𝑥    =    𝜕    𝜕  𝑥      ∫    (    𝑥  1   ,  𝑦  )     (  𝑥  ,  𝑦  )    𝑃      d  𝑥   +  𝑄      d  𝑦   =    𝜕    𝜕  𝑥      ∫    (    𝑥  1   ,  𝑦  )     (  𝑥  ,  𝑦  )    𝑃      d  𝑥   =    d    d  𝑥      ∫    𝑥  1   𝑥   𝑃  (  𝑡  ,  𝑦  )      d  𝑡   =  𝑃  (  𝑥  ,  𝑦  )    


\begin {equation*}\partials [f]{x} =\partials x\int _{(x_1,y)}^{(x,y)}P\,\dx +Q\,\dy =\partials x\int _{(x_1,y)}^{(x,y)}P\,\dx =\diff x\int _{x_1}^xP(t,y)\,\dt =P(x,y)\end {equation*}


   𝑄  (  𝑥  ,  𝑦  )  =      𝜕  𝑓     𝜕  𝑦   


$Q(x,y)=\partials [f]{y}$


   𝑧 


$z$


   F  =  ∇  𝑓 


$\vF =\nabla f$


   (  3  ⇒  1  ) 


$(3\Rightarrow 1)$


       ∫    𝐶  𝑖      (          2  𝑦           𝑥      )   ⋅  d  r  


$\smash {\int _{C_i}\stwovec {2y}{x}\cdot \D \vr }$


   (  0  ,  0  )  →  (  1  ,  1  ) 


$(0,0)\to (1,1)$


$y=x^2$


$\vr (t)=\stwovec tt$


             ∫    𝐶  1    2  𝑦      d  𝑥   +  𝑥      d  𝑦   =    ∫  0  1   3  𝑡      d  𝑡   =    3  2     


\begin {equation*}\int _{C_1}2y\,\dx +x\,\dy =\int _0^13t\,\dt =\frac 32\end {equation*}


$\vr (t)=\stwovec t{t^2}$


             ∫    𝐶  2    2  𝑦      d  𝑥   +  𝑥      d  𝑦   =    ∫  0  1   2    𝑡  2   +  2    𝑡  2       d  𝑡   =    4  3   ≠    3  2     


\begin {equation*}\int _{C_2}2y\,\dx +x\,\dy =\int _0^12t^2+2t^2\,\dt =\frac 43\neq \frac 32\end {equation*}


       ∫    𝐶  2    <    ∫    𝐶  1    


$\smash {\int _{C_2}<\int _{C_1}}$


   F  =    (          2  𝑦           𝑥      )  


$\vF =\stwovec {2y}x$


$\vF $


$D$


$D$


$D$


$C$


$\vF =\stwovec PQ$


$D$


$\vF $


       𝜕  𝑄     𝜕  𝑥    =      𝜕  𝑃     𝜕  𝑦   


$\partials [Q]{x}=\partials [P]{y}$


$D$


$\partials [Q]{x}=\partials [P]{y}$


$\vF $


   F  =  ∇  𝑓  =    (            𝑓  𝑥              𝑓  𝑦       )  


$\vF =\nabla f=\stwovec {f_x}{f_y}$


     𝑄  𝑥   =    𝑓    𝑦  𝑥    =    𝑓    𝑥  𝑦    =    𝑃  𝑦  


$Q_x=f_{yx}=f_{xy}=P_y$


$\vF =\stwovec {2y}x$


     𝜕    𝜕  𝑥    𝑥  =  1  ≠  2  =    𝜕    𝜕  𝑦    (  2  𝑦  ) 


$\partials xx=1\neq 2=\partials y(2y)$


   F  =    (          2  𝑥  𝑦             𝑥  2       )  


$\vF =\stwovec {2xy}{x^2}$


   𝐷  =    ℝ  2  


$D=\R ^2$


     ℝ  2  


$\R ^2$


               𝜕  𝑄     𝜕  𝑥    =  2  𝑥  =      𝜕  𝑃     𝜕  𝑦      ⟹    F    is conservative     


\begin {equation*}\partials [Q]{x}=2x=\partials [P]{y}\implies \vF \text { is conservative}\end {equation*}


$f$


             𝑓  𝑥   =  𝑃  =  2  𝑥  𝑦    ⟹    𝑓  (  𝑥  ,  𝑦  )  =    𝑥  2   𝑦  +  𝑔  (  𝑦  )            𝑓  𝑦   =  𝑄  =    𝑥  2     ⟹    𝑓  (  𝑥  ,  𝑦  )  =    𝑥  2   𝑦  +  ℎ  (  𝑥  )    


\begin {gather*}f_x=P=2xy\implies f(x,y)=x^2y+g(y)\\ f_y=Q=x^2\implies f(x,y)=x^2y+h(x)\end {gather*}


   𝑔  ,  ℎ 


$g,h$


   𝑔  (  𝑦  )  =  ℎ  (  𝑥  )  =  𝑐 


$g(y)=h(x)=c$


   𝑓  (  𝑥  ,  𝑦  )  =    𝑥  2   𝑦  +  𝑐 


$f(x,y)=x^2y+c$


     ∫  𝐶   2  𝑥  𝑦      d  𝑥   +    𝑥  2       d  𝑦   =  0 


$\int _C2xy\,\dx +x^2\,\dy =0$


$S$


   F  =  𝑃  i  +  𝑄  j  +  𝑅  k 


$\vF =P\vi +Q\vj +R\vk $


   𝐸  ⊆    ℝ  3  


$E\subseteq \R ^3$


   𝑃  ,  𝑄  ,  𝑅 


$P,Q,R$


$\vF $


               𝜕  𝑄     𝜕  𝑥    =      𝜕  𝑃     𝜕  𝑦    ,        𝜕  𝑅     𝜕  𝑦    =      𝜕  𝑄     𝜕  𝑧       and         𝜕  𝑃     𝜕  𝑧    =      𝜕  𝑅     𝜕  𝑥      


\begin {equation*}\partials [Q]{x}=\partials [P]{y},\qquad \partials [R]{y}=\partials [Q]{z}\quad \text {and}\quad \partials [P]{z}=\partials [R]{x}\end {equation*}


   F  =    (          𝑃           𝑄      )   =    1      𝑥  2   +    𝑦  2         (          −  𝑦           𝑥      )  


$\vF =\stwovec PQ=\frac 1{x^2+y^2}\stwovec {-y}x$


$\vF $


   r  (  𝑡  )  =    (           cos     𝑡            sin     𝑡      )   ,    0  ≤  𝑡  ≤  2  𝜋 


$\vr (t)=\stwovec {\cos t}{\sin t},\ 0\le t\le 2\pi $


             ∫  𝐶   F  ⋅  d  r  =    ∫  0    2  𝜋      (              −   sin     𝑡         cos     𝑡          )   ⋅    (              −   sin     𝑡         cos     𝑡          )         d  𝑡   =  2  𝜋    


\begin {equation*}\int _C\vF \cdot \D \vr =\int _0^{2\pi }\twovec {-\sin t}{\cos t}\cdot \twovec {-\sin t}{\cos t}\,\dt =2\pi \end {equation*}


     ∫  𝐶   F  ⋅    d  𝑟   ≠  0 


$\int _C\vF \cdot \dr \neq 0$


$\vF $


               𝜕  𝑄     𝜕  𝑥    =        𝑦  2   −    𝑥  2      (    𝑥  2   +    𝑦  2     )  2     =      𝜕  𝑃     𝜕  𝑦      


\begin {equation*}\partials [Q]{x} =\frac {y^2-x^2}{(x^2+y^2)^2} =\partials [P]{y}\end {equation*}


$\vF $


$D$


   𝐷  =    ℝ  2   ∖  {  (  0  ,  0  )  } 


$D=\R ^2\setminus \{(0,0)\}$


$D$


     𝑄  𝑥   =    𝑃  𝑦  


$Q_x=P_y$


$D$


$D$


$x$


           𝐷  =    ℝ  2   ∖  {  (  𝑥  ,  0  )  ∶  𝑥  ≥  0  }    


\begin {equation*}D=\R ^2\setminus \big \{(x,0):x\ge 0\big \}\end {equation*}


$\vF $


     ∫  𝐶   F  ⋅  d  r  =  0 


$\int _C\vF \cdot \D \vr =0$


$D$


$D$


$\vF $


$D$


   𝑓  =  𝜃 


$f=\theta $


           𝑓  (  𝑥  ,  𝑦  )  =    {               tan     −  1        𝑦  𝑥           𝑦  >  0        𝜋          𝑦  =  0        𝜋  +     tan     −  1        𝑦  𝑥           𝑦  <  0             


\begin {equation*}f(x,y)= \begin {cases} \tan ^{-1}\frac yx&y>0\\ \pi &y=0\\ \pi +\tan ^{-1}\frac yx&y<0 \end {cases}\end {equation*}


   𝜃 


$\theta $


$x$


   F  (  𝑥  ,  𝑦  )  =  𝑃  i  +  𝑄  j 


$\vF (x,y)=P\vi +Q\vj $


   𝐷  ⊆    ℝ  2  


$D\subseteq \R ^2$


   𝑃  ,  𝑄 


$P,Q$


$\vF $


   =  ∇  𝑓 


$=\nabla f$


$f$


$\int _C\vF \cdot \D \vr $


$C$


$D$


$\int _C\vF \cdot \D \vr =0$


$C$


$D$


$D$


$\partials [Q]{x}=\partials [P]{y}$


$\vF =P\vi +Q\vj +R\vk $


$E\subseteq \R ^3$


               𝜕  𝑄     𝜕  𝑥    =      𝜕  𝑃     𝜕  𝑦    ,        𝜕  𝑅     𝜕  𝑦    =      𝜕  𝑄     𝜕  𝑧    ,        𝜕  𝑃     𝜕  𝑧    =      𝜕  𝑅     𝜕  𝑥      


\begin {equation*}\partials [Q]{x}=\partials [P]{y},\quad \partials [R]{y}=\partials [Q]{z},\quad \partials [P]{z}=\partials [R]{x}\end {equation*}



Path Independence

The Fundamental Theorem has an amazing interpretation: line integrals in con­
servative vector fields depend only on a curve’s endpoints. We’d like to turn this 
idea on its head. Does a line integral (or integrals?) being independent of path 
require a vector field to be conservative?
This discussion is lengthy and tricky, but very important.

C
Ĉ

A

B

Definition. A line integral ∫𝐶 F ⋅ dr is independent of path if ∫𝐶 F ⋅ dr = ∫ ̂𝐶 F ⋅ dr for all curves ̂𝐶 with the 
same endpoints as 𝐶.
Before stating the relevant theorem, we need a few terms form basic topology.

Definition. 1. A curve is closed if it starts and finishes at the same point.
2. Let 𝐷 be a region: for us, this means a subset of either the plane or 3D space. We say that 𝐷 is:

(a) Open if it contains none of its boundary points.
(b) (Path-)Connected if every pair of points 𝐴, 𝐵 in 𝐷 can be joined by a curve lying entirely in 𝐷.

CA

 A closed curve  An open region in the plane  A not-open region in the plane

C

D

A

B

D

A

B

C?

A connected region: 𝐶 joins points 𝐴, 𝐵 A disconnected region: we cannot join 
𝐴, 𝐵 with a curve lying entirely in 𝐷

For instance, the inside of the unit disk 𝐷 = {(𝑥, 𝑦) ∶ 𝑥2 + 𝑦2 < 1} is both connected and open. Its 
boundary curve (the circle 𝑥2 + 𝑦2 = 1) is closed.

Theorem. Let 𝐶 be a curve in an open connected region 𝐷 and F a continuous vector field on 𝐷. The following 
statements are equivalent (mean the same thing):

1. ∫𝐶 F ⋅ dr is independent of path.

2. ∫𝑆 F ⋅ dr = 0 for every closed curve 𝑆 in 𝐷.

3. F is conservative.
Read the statement carefully: if even one line integral ∫𝐶 F ⋅ dr is independent of path, then all line 
integrals over all curves in 𝐷 are independent of path. Path-independence has doesn’t depend on paths 
at all: it is a property of the vector field.
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Proof. We prove the theorem in three stages.

(1 ⇒ 2) Suppose ∫𝐶 F ⋅ dr is independent of path and let 𝑆 be a closed curve.
Since 𝐷 is connected, we may join the starting point 𝐴 of 𝐶 to some 
fixed point 𝑃 on 𝑆 by a curve 𝐽 lying in 𝐷. Writing −𝐽 for the same 
curve travelled in reverse, we see that the composite curve

𝐶1 = 𝐽 ∪ 𝑆 ∪ (−𝐽) ∪ 𝐶

has the same endpoints (𝐴, 𝐵) as 𝐶. By path-independence,

C

J

S

A

B
P

∫
𝐶

F ⋅ dr = ∫
𝐶1

F ⋅ dr = ⎡⎢
⎣
∫

𝐽
+ ∫

𝑆
+ ∫

−𝐽
+ ∫

𝐶
⎤⎥
⎦

F ⋅ dr = ∫
𝑆

F ⋅ dr + ∫
𝐶

F ⋅ dr

since ∫−𝐽 F ⋅ dr = − ∫𝐽 F ⋅ dr. We conclude that ∫𝑆 F ⋅ dr = 0.

(2 ⇒ 3) Assume ∫𝑆 F ⋅ dr = 0 around every closed curve in 𝐷. Choose any point 𝐴 in 𝐷 and define

𝑓 (𝑥, 𝑦) = ∫
𝐶

F ⋅ dr

where 𝐶 is any curve joining 𝐴 to (𝑥, 𝑦). If ̃𝐶 is another curve with 
the same endpoints, then 𝑆 = 𝐶 ∪ (− ̃𝐶) is a closed curve, whence

∫
𝐶

F ⋅ dr = (∫
𝐶

− ∫
𝑆
) F ⋅ dr = ∫

̃𝐶
F ⋅ dr

The function 𝑓  is therefore independent2 of the choice of path 𝐶. We 
claim that 𝑓  is a potential function for F.

C

C1
D

A

B

Since 𝐷 is open, there exists (𝑥1, 𝑦) ∈ 𝐷 such that 𝑥1 < 𝑥. Let 𝐶1
join 𝐴 to (𝑥1, 𝑦), and 𝐶2 be the line segment thence to (𝑥, 𝑦). Then

𝑓 (𝑥, 𝑦) = ∫
𝐶1

F ⋅ dr + ∫
𝐶2

F ⋅ dr

Since 𝑥1 is a constant, the first integral is independent of 𝑥 and so

𝜕𝑓
𝜕𝑥 =

𝜕
𝜕𝑥 ∫

𝐶2

F ⋅ dr

C1

C2
D

A

(x, y)(x1, y)

Write F = ( 𝑃
𝑄 ). Along 𝐶2 we have 𝑦 constant, hence d𝑦 = 0. Therefore

𝜕𝑓
𝜕𝑥 =

𝜕
𝜕𝑥 ∫

(𝑥,𝑦)

(𝑥1,𝑦)
𝑃 d𝑥 + 𝑄 d𝑦 =

𝜕
𝜕𝑥 ∫

(𝑥,𝑦)

(𝑥1,𝑦)
𝑃 d𝑥 =

d
d𝑥 ∫

𝑥

𝑥1

𝑃(𝑡, 𝑦) d𝑡 = 𝑃(𝑥, 𝑦)

by the Fundamental Theorem of Calculus. A similar argument shows that 𝑄(𝑥, 𝑦) = 𝜕𝑓
𝜕𝑦  (in 3D a 

𝑧-argument is also needed). Putting this together we see that F = ∇𝑓  is conservative.

(3 ⇒ 1) This is simply the Fundamental Theorem of Line Integrals.

2This (and the first part) show that (1 ⇔ 2) even without the assumptions about 𝐷 being open and F continuous.
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Example We evaluate the line integrals ∫𝐶𝑖
( 2𝑦

𝑥 ) ⋅ dr over the line (0, 0) → (1, 1) and the parabola 
𝑦 = 𝑥2 between the same two points.
For the first curve, r(𝑡) = ( 𝑡

𝑡 ) produces

∫
𝐶1

2𝑦 d𝑥 + 𝑥 d𝑦 = ∫
1

0
3𝑡 d𝑡 =

3
2

For the second curve, r(𝑡) = ( 𝑡
𝑡2 ) yields

∫
𝐶2

2𝑦 d𝑥 + 𝑥 d𝑦 = ∫
1

0
2𝑡2 + 2𝑡2 d𝑡 =

4
3 ≠

3
2

0

1
y

0 1

C2

C1

x

The relative strengths of the arrows along each curve should make it clear why ∫𝐶2
< ∫𝐶1

. The fact 
that these integrals have different values says that F = ( 2𝑦

𝑥 ) is not conservative.

Simple-Connectedness: When is F conservative?

Searching for a potential function can be a lot of work. It is useful to know if a vector field is conservative 
before you start looking. This discussion requires one more topological concept.

Definition. A connected region 𝐷 is simply-connected if every closed curve in 𝐷 may be shrunk to a 
point without leaving 𝐷.

C

C

Simply-connected: any closed curve may 
be shrunk to a point

Not simply-connected: cannot shrink 𝐶 to a point 
due to the ‘hole’ in the region

Theorem. Suppose F = ( 𝑃
𝑄 ) has continuous partial derivatives on a domain 𝐷.

1. If F is conservative, then 𝜕𝑄
𝜕𝑥 = 𝜕𝑃

𝜕𝑦 .

2. If 𝐷 is simply-connected and 𝜕𝑄
𝜕𝑥 = 𝜕𝑃

𝜕𝑦 , then F is conservative.

Proof. 1. Suppose F = ∇𝑓 = ( 𝑓𝑥
𝑓𝑦 ). Then 𝑄𝑥 = 𝑓𝑦𝑥 = 𝑓𝑥𝑦 = 𝑃𝑦.

2. This will follow quickly from Green’s Theorem (next section).

Examples 1. F = ( 2𝑦
𝑥 ) is not conservative (on any domain) because 𝜕

𝜕𝑥𝑥 = 1 ≠ 2 = 𝜕
𝜕𝑦(2𝑦).
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2. Find a potential function, if there is one, for the vector field on F = ( 2𝑥𝑦
𝑥2 ) on 𝐷 = ℝ2.

You can dive straight in to the computation, but it is helpful to use the Theorem first so that you 
don’t waste time. Since ℝ2 is simply-connected,

𝜕𝑄
𝜕𝑥 = 2𝑥 =

𝜕𝑃
𝜕𝑦 ⟹ F is conservative

Now that we know a potential function 𝑓  exists, we can solve for it:

𝑓𝑥 = 𝑃 = 2𝑥𝑦 ⟹ 𝑓 (𝑥, 𝑦) = 𝑥2𝑦 + 𝑔(𝑦)
𝑓𝑦 = 𝑄 = 𝑥2 ⟹ 𝑓 (𝑥, 𝑦) = 𝑥2𝑦 + ℎ(𝑥)

for unknown functions 𝑔, ℎ. Choosing 𝑔(𝑦) = ℎ(𝑥) = 𝑐 (constant) yields all possible potential 
functions 𝑓 (𝑥, 𝑦) = 𝑥2𝑦 + 𝑐.
From this, it follows that ∫𝐶 2𝑥𝑦 d𝑥 + 𝑥2 d𝑦 = 0 around any closed curve 𝑆.

What changes in 3D? Essentially nothing!
Simple-connectedness means the same thing. For example, a solid 
torus is non-simply-connected since a curve can be drawn inside it 
which cannot be shrunk to a point.
The primary difference is that the relevant Theorem has three condi­
tions, corresponding to the three pairs of mixed partial derivatives…

Theorem. Suppose F = 𝑃i + 𝑄j + 𝑅k is a vector field on a simply-connected region 𝐸 ⊆ ℝ3, and that 𝑃, 𝑄, 𝑅
have continuous partial derivatives. Then F is conservative if and only if

𝜕𝑄
𝜕𝑥 =

𝜕𝑃
𝜕𝑦 ,

𝜕𝑅
𝜕𝑦 =

𝜕𝑄
𝜕𝑧 and

𝜕𝑃
𝜕𝑧 =

𝜕𝑅
𝜕𝑥

This isn’t so useful to us and will be much easier to remember once we’ve introduced curl later on…

Does Simple-Connectedness Really Matter? Yes!

To see why, consider applying our analysis to the vector field F = ( 𝑃
𝑄 ) = 1

𝑥2+𝑦2 ( −𝑦
𝑥 ).

1. Calculate the line integral of F around the unit circle:
r(𝑡) = ( cos 𝑡

sin 𝑡 ) , 0 ≤ 𝑡 ≤ 2𝜋

∫
𝐶

F ⋅ dr = ∫
2𝜋

0
(− sin 𝑡

cos 𝑡 ) ⋅ (− sin 𝑡
cos 𝑡 ) d𝑡 = 2𝜋

Since ∫𝐶 F ⋅ d𝑟 ≠ 0, we believe that F is non-conservative.

−1

1y

−1 1
x

C

2. However, the partial derivatives are equal
𝜕𝑄
𝜕𝑥 =

𝑦2 − 𝑥2

(𝑥2 + 𝑦2)2 =
𝜕𝑃
𝜕𝑦

We therefore want to say that F is conservative.

One of these arguments must be false, but which? The answer depends on whether our domain is 
simply-connected. A full argument requires Green’s Theorem, but we can see the shape of it already…

6
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Case 1: 𝐷 encircles the origin Suppose that 𝐷 = ℝ2 ∖ {(0, 0)} is the punctured plane (without the 
origin). Such a domain 𝐷 is not simply-connected. Indeed the unit circle cannot be shrunk to a 
point. The 𝑄𝑥 = 𝑃𝑦 doesn’t allow us to conclude anything. Argument 1 is correct and the vector 
field is non-conservative on 𝐷.

Case 2: 𝐷 is simply-connected For instance, we could exclude the positive 𝑥-axis and let

𝐷 = ℝ2 ∖ {(𝑥, 0) ∶ 𝑥 ≥ 0}

Now argument 2 is correct: F is conservative and ∫𝐶 F ⋅ dr = 0
around every closed curve in 𝐷.
In the picture, line integrals round the solid curves are zero; 
the unit circle does not lie in 𝐷. A suitable potential function 
for F on 𝐷 is 𝑓 = 𝜃 (the polar-angle):

y

x

D

𝑓 (𝑥, 𝑦) =
⎧{{
⎨{{⎩

tan−1 𝑦
𝑥 𝑦 > 0

𝜋 𝑦 = 0
𝜋 + tan−1 𝑦

𝑥 𝑦 < 0

The problem in extending this potential function to the entire punctured plane is that 𝜃 is not 
continuous everywhere. Indeed it is typically taken to be discontinuous on the positive 𝑥-axis!

Summary

If F(𝑥, 𝑦) = 𝑃i + 𝑄j is defined on an open connected region 𝐷 ⊆ ℝ2, where 𝑃, 𝑄 have continuous first 
derivatives, then the following are equivalent:

1. F is conservative (= ∇𝑓  for some potential function 𝑓 ).

2. ∫𝐶 F ⋅ dr is independent of path for any curve 𝐶 in 𝐷.

3. ∫𝐶 F ⋅ dr = 0 for every piecewise smooth closed curve 𝐶 in 𝐷.

4. In addition, if 𝐷 is simply-connected, then 𝜕𝑄
𝜕𝑥 = 𝜕𝑃

𝜕𝑦 .

If F = 𝑃i + 𝑄j + 𝑅k on a volume 𝐸 ⊆ ℝ3 then the fifth condition becomes

𝜕𝑄
𝜕𝑥 =

𝜕𝑃
𝜕𝑦 ,

𝜕𝑅
𝜕𝑦 =

𝜕𝑄
𝜕𝑧 ,

𝜕𝑃
𝜕𝑧 =

𝜕𝑅
𝜕𝑥
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