16.4 Green's Theorem

Unless a vector field \mathbf{F} is conservative, computing the line integral

$$
\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\int_{C} P \mathrm{~d} x+Q \mathrm{~d} y
$$

is often difficult and time-consuming. For a given integral one must:

1. Split C into separate smooth subcurves C_{1}, C_{2}, C_{3}.
2. Parameterize each curve C_{i} by a vector-valued function $\mathbf{r}_{i}(t), a_{i} \leq t \leq b_{i}$.
3. Evaluate each integral $\int_{C_{i}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\int_{a_{i}}^{b_{i}} \mathbf{F}\left(\mathbf{r}_{i}(t)\right) \cdot \mathbf{r}_{i}^{\prime}(t) \mathrm{d} t$.

Thankfully there is a short-cut available for line integrals over particularly simple curves C.
Definition. A curve C is the planes is:

1. Closed if it starts and finishes at the same point.
2. Simple if it has no self-intersections; it does not cross itself.
3. Positively-oriented if the direction of travel around C is such that the inside of C is on one's left.

A negatively oriented simple closed curve

A non-simple closed curve

A positively oriented simple closed curve

Alternatively, a simple closed curve is positively oriented if one traverses it counter-clockwise. This categorization can easily lead you astray however, so it is better to think about the inside.
Definition. The notation $\oint_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$ denotes a line integral around a positively oriented, simple, closed curve C.

If D is a region, then its boundary curve is denoted ∂D.
Observe that D is simply-connected iff its boundary ∂D is simple and closed.

Theorem (Green's Theorem). Let D be a simply-connected region of the plane with positively-oriented, simple, closed, piecewise-smooth boundary $C=\partial D$. Suppose that P, Q have continuous partial derivatives on some open region containing D and its boundary. Then

$$
\oint_{C} P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y=\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \mathrm{~d} A=\iint_{D} Q_{x}-P_{y} \mathrm{~d} A
$$

Green's theorem is often useful in examples since double integrals are typically easier to evaluate than line integrals.
Example Find $\oint_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$, where C is the square with corners $(0,0)$, $(1,0),(1,1),(0,1)$, and

$$
\mathbf{F}(x, y)=\left(x^{3}+1\right) \mathbf{i}+\left(x y^{2}-2\right) \mathbf{j}
$$

By Green's Theorem,

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r} & =\iint_{R} \frac{\partial}{\partial x}\left(x y^{2}-2\right)-\frac{\partial}{\partial y}\left(x^{3}+1\right) \mathrm{d} A \\
& =\int_{0}^{1} \int_{0}^{1} y^{2} \mathrm{~d} x \mathrm{~d} y=\frac{1}{3}
\end{aligned}
$$

We could check this by evaluating the line integral directly...
Proof of Green's Theorem. The proof has three stages. First prove half each of the theorem when the region D is either Type 1 or Type 2. Putting these together proves the theorem when D is both type 1 and 2. The proof is completed by cutting up a general region into regions of both types.

First suppose that R is a region of Type 1
C consists of two, three, or four curves: $y=f(x)$ and $y=g(x)$ between $x=a$ and b and (possibly) two vertical edges at $x=a, b$. On the straight edges x is constant and so $\mathrm{d} x=0$. Therefore

$$
\begin{aligned}
\oint_{C} P(x, y) \mathrm{d} x & =\int_{a}^{b} P(x, f(x)) \mathrm{d} x+\int_{b}^{a} P(x, g(x)) \mathrm{d} x \\
& =\int_{a}^{b} P(x, f(x))-P(x, g(x)) \mathrm{d} x
\end{aligned}
$$

However

$$
\iint_{D} P_{y} \mathrm{~d} A=\int_{a}^{b} \int_{f(x)}^{g(x)} P_{y}(x, y) \mathrm{d} y \mathrm{~d} x=\int_{a}^{b} P(x, g(x))-P(x, f(x)) \mathrm{d} x=-\oint_{C} P(x, y) \mathrm{d} x
$$

Hence $\oint_{C} P(x, y) \mathrm{d} x=-\iint_{D} P_{y} \mathrm{~d} A$ which is half of the theorem.
Now suppose that R is a region of Type 2
Analogously to before, we compute

$$
\begin{aligned}
\oint_{C} Q(x, y) \mathrm{d} y & =\int_{d}^{c} Q(j(y), y) \mathrm{d} y+\int_{c}^{d} Q(k(y), y) \mathrm{d} y \\
& =\int_{c}^{d} Q(k(y), y)-Q(j(y), y) \mathrm{d} y \\
& =\int_{c}^{d} \int_{j(y)}^{k(y)} Q_{x}(x, y) \mathrm{d} x \mathrm{~d} y=\iint_{R} Q_{x} \mathrm{~d} A
\end{aligned}
$$

This is the other half of the theorem. It follows that if D is a region of both Types $1 \& 2$ we have the result:

$$
\oint_{C} P \mathrm{~d} x+Q \mathrm{~d} y=\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \mathrm{~d} A
$$

For general regions, cut D into pieces of both Types $1 \& 2$: line integrals along common edges are counted in both directions and thus cancel 1

For example, D_{1}, \ldots, D_{4} are of Types $1 \& 2$ so Green's Theorem holds for each piece. Notice however that all boundaries are traversed twice in opposite directions. For example, the curves C_{1} and C_{2} run opposite to each other on the common boundary of D_{1} and D_{2}. It follows that the line integrals along these pieces cancel each other out. Therefore

$$
\begin{aligned}
\oint_{C} P \mathrm{~d} x+Q \mathrm{~d} y & =\left[\oint_{C_{1}}+\cdots+\oint_{C_{4}}\right] P \mathrm{~d} x+Q \mathrm{~d} y \\
& =\left[\iint_{D_{1}}+\cdots+\iint_{D_{4}}\right] \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \mathrm{~d} A=\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \mathrm{~d} A
\end{aligned}
$$

Examples

1. Let C be the perimeter of the ellipse

$$
\frac{x^{2}}{4}+y^{2}=1
$$

and

$$
\mathbf{F}(x, y)=\binom{\sin \left(e^{x}\right)-y}{4 x+\cos \left(y^{2}\right)}
$$

Then

$$
\oint_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\iint_{D} \frac{\partial}{\partial x}\left(4 x+\cos \left(y^{2}\right)\right)-\frac{\partial}{\partial y}\left(\sin \left(e^{x}\right)-y\right) \mathrm{d} A
$$

$$
=\iint_{D} 4+1 \mathrm{~d} A=5 \iint_{D} \mathrm{~d} A=10 \pi \quad \text { (area of ellipse formula) }
$$

This is contrived, but it would have been much harder to evaluate directly as a line integral.

[^0]2. Calculate $\int_{C}\left(e^{x^{2}}+y\right) \mathrm{d} x+\left(e^{2 x}-y\right) \mathrm{d} y$ where C is formed from the parabola $y=1-x^{2}$ and the x-axis as shown
The orientation of C is negative, so Green's Theorem gets a minus sign:

\[

$$
\begin{aligned}
\int_{C}\binom{e^{x^{2}}+y}{e^{2 x}-y} \cdot \mathrm{~d} \mathbf{r} & =-\iint_{R} \frac{\partial}{\partial x}\left(e^{2 x}-y\right)-\frac{\partial}{\partial y}\left(e^{x^{2}}+y\right) \mathrm{d} A \\
& =\int_{-1}^{1} \int_{0}^{1-x^{2}} 1-2 e^{2 x} \mathrm{~d} y \mathrm{~d} x=\int_{-1}^{1}\left(1-x^{2}\right)\left(1-2 e^{2 x}\right) \mathrm{d} x \\
& =e^{2 x}\left(x^{2}-x-\frac{1}{2}\right)+x-\left.\frac{1}{3} x^{3}\right|_{-1} ^{1} \quad \quad \text { (integration by parts) } \\
& =\frac{4}{3}-\frac{1}{2} e^{2}-\frac{3}{2} e^{-2}
\end{aligned}
$$
\]

Simple-connectedness revisited We are now in a position to prove our simple formula: if \mathbf{F} has continuous partial derivatives on a simply-connected region D, then

$$
\mathbf{F}=P \mathbf{i}+Q \mathbf{j} \text { conservative } \Longleftrightarrow \frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}
$$

Proof. Recall that \mathbf{F} is conservative on D if and only if $\oint_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=0$ for all C in D.
D simply-connected \Longrightarrow interior \widetilde{D} of every simple-closed curve C in D is also simply-connected. By Green's Theorem,

$$
\mathbf{F} \text { conservative } \Longleftrightarrow 0=\oint_{C} P \mathrm{~d} x+Q \mathrm{~d} y=\iint_{\tilde{D}} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \mathrm{~d} A
$$

for all such curves C. This says that $\iint_{\widetilde{D}} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \mathrm{~d} A=0$ independent of the domain \widetilde{D}. This is only possible if $\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$ everywhere.

Calculating Areas A powerful application of Green's Theorem is to find the area inside a curve:
Theorem. If C is a positively oriented, simple, closed curve, then the area inside C is given by

$$
\oint_{C} x \mathrm{~d} y=-\oint_{C} y \mathrm{~d} x=\frac{1}{2} \oint_{C} x \mathrm{~d} y-y \mathrm{~d} x
$$

Proof. If D the interior of C then, by Green's Theorem,

$$
\begin{aligned}
& \oint_{C} x \mathrm{~d} y=\iint_{D} \frac{\partial}{\partial x} x-\frac{\partial}{\partial y} 0 \mathrm{~d} A=\iint_{D} \mathrm{~d} A, \quad \text { and, } \\
& -\oint_{C} y \mathrm{~d} x=-\iint_{D} \frac{\partial}{\partial x} 0-\frac{\partial}{\partial y} y \mathrm{~d} A=\iint_{D} \mathrm{~d} A
\end{aligned}
$$

Examples

1. Find the area of the triangle with vertices $(0,0),(1,1),(3,5)$

Parameterizing with $0 \leq t \leq 1$ each time, the triangle has three parts

$$
\begin{aligned}
& C_{1}: \mathbf{r}_{1}(t)=t\binom{1}{1} \Longrightarrow \mathrm{~d} y=\mathrm{d} t \\
& C_{2}: \mathbf{r}_{2}(t)=t\binom{3}{5}+(1-t)\binom{1}{1}=\binom{1+2 t}{1+4 t} \Longrightarrow \mathrm{~d} y=4 \mathrm{~d} t \\
& C_{3}: \mathbf{r}_{3}(t)=(1-t)\binom{3}{5} \Longrightarrow \mathrm{~d} y=-5 \mathrm{~d} t
\end{aligned}
$$

We thus calculate:

$$
A=\oint_{C} x \mathrm{~d} y=\int_{0}^{1} t+4(3 t+1-t)-5(3(1-t)) \mathrm{d} t=\int_{0}^{1} 24 t-11 \mathrm{~d} t=1
$$

The same answer can be found more easily using basic geometry.
2. Use Green's Theorem to find the area of the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Parameterizing with $0 \leq t \leq 2 \pi$, we have

$$
C: \mathbf{r}(t)=\binom{a \cos t}{b \sin t} \Longrightarrow\binom{\mathrm{~d} x}{\mathrm{~d} y}=\binom{-a \sin t}{b \cos t} \mathrm{~d} t
$$

Therefore

$$
\begin{aligned}
A=\frac{1}{2} \oint_{C} x \mathrm{~d} y-y \mathrm{~d} x & =\frac{1}{2} \int_{0}^{2 \pi} a \cos t \cdot b \cos t-b \sin t(-a \sin t) \mathrm{d} t \\
& =\frac{1}{2} \int_{0}^{2 \pi} a b \mathrm{~d} t=\pi a b
\end{aligned}
$$

3. Find the area of the asteroid

$$
x^{2 / 3}+y^{2 / 3}=1
$$

Parameterizing with $0 \leq t \leq 2 \pi$, we have

$$
C: \mathbf{r}(t)=\binom{\cos ^{3} t}{\sin ^{3} t} \Longrightarrow\binom{\mathrm{~d} x}{\mathrm{~d} y}=\binom{-3 \sin t \cos ^{2} t}{3 \cos t \sin ^{2} t} \mathrm{~d} t
$$

Therefore

$$
\begin{aligned}
A & =\frac{1}{2} \oint_{C} x \mathrm{~d} y-y \mathrm{~d} x=\frac{1}{2} \int_{0}^{2 \pi} \cos ^{3} t \cdot 3 \cos t \sin ^{2} t-\sin ^{3} t\left(-3 \sin t \cos ^{2} t\right) \mathrm{d} t \\
& =\frac{3}{2} \int_{0}^{2 \pi} \sin ^{2} t \cos ^{2} t \mathrm{~d} t=\frac{3}{8} \int_{0}^{2 \pi} \sin ^{2} 2 t \mathrm{~d} t \\
& =\frac{3}{16} \int_{0}^{2 \pi} 1-\cos 4 t \mathrm{~d} t=\frac{3}{8} \pi
\end{aligned}
$$

Regions with holes Green's Theorem can be modified to apply to non-simply-connected regions.

In the picture, the boundary curve has three pieces $C=C_{1} \cup$ $C_{2} \cup C_{3}$ oriented so that region D is always on the left of the boundary.
Join the curves together with cuts (traversed both directions) to recover Green's Theorem for a simply-connected region

If the boundary of D is made up of n curves $C=C_{1} \cup C_{2} \cup \cdots \cup C_{n}$ all oriented so that D is on the left, then

$$
\int_{C} P \mathrm{~d} x+Q \mathrm{~d} y=\sum_{i=1}^{n} \int_{C_{i}} P \mathrm{~d} x+Q \mathrm{~d} y=\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \mathrm{~d} A
$$

Example Calculate the line integral $\int_{C} x y \mathrm{~d} x+\mathrm{d} y$ where $C=$ $C_{1} \cup C_{2}$ is the curve shown.

The pieces of C are oriented correctly for Green's Theorem:

$$
\begin{aligned}
\int_{C} x y \mathrm{~d} x+\mathrm{d} y & =\iint_{R}-x \mathrm{~d} A \\
& =\int_{0}^{4} \int_{0}^{4-x}-x \mathrm{~d} y \mathrm{~d} x-\int_{1}^{2} \int_{1}^{3-x}-x \mathrm{~d} y \mathrm{~d} x \\
& =\int_{0}^{4} x^{2}-4 x \mathrm{~d} x+\int_{1}^{2} 2 x-x^{2} \mathrm{~d} x=-10
\end{aligned}
$$

Winding Numbers Finally we return to our rotational vector field $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}=\frac{1}{x^{2}+y^{2}}\binom{-y}{x}$ from the previous section. We can use Green's Theorem to compute the line integral of \mathbf{F} around any positively oriented, simple, closed curve surrounding the origin.

Let C be any such curve. Draw a circle S_{ε} of small radius ε inside C. Apply Green's Theorem to the region D between C and S_{ε}, noting that S_{ε} is oriented incorrectly for the theorem:

$$
\left(\oint_{C}-\oint_{S_{\varepsilon}}\right) \mathbf{F} \cdot \mathrm{d} \mathbf{r}=\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \mathrm{~d} A=0
$$

since $\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$ everywhere. It follows that

$$
\oint_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\oint_{S_{\varepsilon}} \mathbf{F} \cdot \mathrm{d} \mathbf{r}
$$

for all curves C.

Parameterizing S_{ε} by $\mathbf{r}(t)=\varepsilon\binom{\cos t}{\sin t}, 0 \leq t \leq 2 \pi$ gives

$$
\oint_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\oint_{S_{\varepsilon}} \mathbf{F} \cdot \mathrm{d} \mathbf{r}=\int_{0}^{2 \pi} \frac{1}{\varepsilon^{2}}\binom{-\varepsilon \sin t}{\varepsilon \cos t} \cdot\binom{-\varepsilon \sin t}{\varepsilon \cos t} \mathrm{~d} t=\int_{0}^{2 \pi} \mathrm{~d} t=2 \pi
$$

The line integral around all such curves C is therefore 2π.

We already know that if C is closed and does not orbit the origin O, then $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=0$. It follows that if C is any simple closed curve in the plane which avoids the O, then

$$
\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\int_{C} \frac{1}{x^{2}+y^{2}}(x \mathrm{~d} y-y \mathrm{~d} x)=2 \pi n
$$

where n is the number of times C orbits O counter-clockwise. The integer $n=\frac{1}{2 \pi} \int_{C} \frac{1}{r^{2}}(x \mathrm{~d} y-y \mathrm{~d} x)$ is called the winding number of C, and is an important concept in topology.
For example the orange curve has winding number 3, while the blue has winding number -2 .

[^0]: ${ }^{1}$ We will have to leave it as an article of faith that any simply-connected region D may be so decomposed.

