16.4 Green’s Theorem

Unless a vector field F is conservative, computing the line integral

/F- dr:/de+Qdy
C C
is often difficult and time-consuming. For a given integral one must:

1. Split C into separate smooth subcurves Cy, Cy, Cs.

2. Parameterize each curve C; by a vector-valued function r;(t), a; < t < b;.

3. Evaluate each integral [ F- dr = fulj’ F(r;(t)) - ri(t) dt.
Thankfully there is a short-cut available for line integrals over particularly simple curves C.
Definition. A curve C is the planes is:

1. Closed if it starts and finishes at the same point.

2. Simple if it has no self-intersections; it does not cross itself.

3. Positively-oriented if the direction of travel around C is such that the inside of C is on one’s left.

O X O

A negatively oriented A non-simple closed curve A positively oriented
simple closed curve simple closed curve

Alternatively, a simple closed curve is positively oriented if one traverses it counter-clockwise. This
categorization can easily lead you astray however, so it is better to think about the inside.
Definition. The notation ¢ F - dr denotes a line integral around a positively

C
oriented, simple, closed curve C.
If D is a region, then its boundary curve is denoted dD.

Observe that D is simply-connected iff its boundary dD is simple and
closed.

Theorem (Green’s Theorem). Let D be a simply-connected region of the plane with positively-oriented,

simple, closed, piecewise-smooth boundary C = dD. Suppose that P, Q have continuous partial derivatives on
some open region containing D and its boundary. Then

0Q 0P

PGy dr+Quryydy = [[ 5% - 3y 44 = J @i~ Pyda
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Green’s theorem is often useful in examples since double integrals are typically easier to evaluate
than line integrals.

Example Find ]{ F - dr, where C is the square with corners (0,0), U I T T W W e
C A T

(1,0), (1,1), (0,1), and NI
NN LN NN N Ny e
F(x,y) = (x® + )i+ (xy? —2)j VN NN N NN Y e
oy = ity Y NN LU N NN N Y e
By Green’s Theorem, VAT L VR N SO
LR TR TR T T T W W VA N N
d IR TR T RNAN
%F dr_//ax W @(XJFl)dA NN NN
5 RN "R W W W W W W VI NN
Z/O/OydxdyZ* VU OO

We could check this by evaluating the line integral directly. ..

Proof of Green’s Theorem. The proof has three stages. First prove half each of the theorem when the
region D is either Type 1 or Type 2. Putting these together proves the theorem when D is both type 1
and 2. The proof is completed by cutting up a general region into regions of both types.

y
First suppose that R is a region of Type 1 y=38x)

C consists of two, three, or four curves: y = f(x) and y = g(x)
between x = a and b and (possibly) two vertical edges at x = 4, b.
On the straight edges x is constant and so dx = 0. Therefore

7{CP(x,y) dx:/abP(x,f(x))dx+/:P(x,g(x))dx
y=f(x)
= [Pl f() ~ Pl g()) dx ; —

However
// P,dA = / / (%, 1) dydx—/abP(x,g(x))—P(x,f(x))dx:—j{CP(x,y)dx

Hence ]{ P(x,y)dx = — / P, dA which is half of the theorem.
C D

Now suppose that R is a region of Type 2 y
Analogously to before, we compute dr
74 Qx,y)dy = / Qi(y),y)dy + /
= / QUi(y),y)dy
C =
_/ / Qu(x,y) dxdy = // Q. dA
X




This is the other half of the theorem. It follows that if D is a region of both Types 1 & 2 we have the
result:

%Pdwgdy // o _ o8

For general regions, cut D into pieces of both Types 1 & 2: line integrals along common edges are

counted in both directions and thus cancell

For example, Dy, ..., Dy are of Types 1 & 2 so Green’s Theorem holds for each piece. Notice
however that all boundaries are traversed twice in opposite directions. For example, the curves C;
and C; run opposite to each other on the common boundary of D; and D;. It follows that the line
integrals along these pieces cancel each other out. Therefore

7{dex+Qdy: [7{ +---+f]de+Qdy

SUSSYAESTEE S .

1. Let C be the perimeter of the ellipse

Examples

4
A
X 2 _ ;
n +y =1 1
and i
-
[ sin(e®) —y t
Flxy) = <4x+cos(y2)>
Then
741:- dr—// 9 (4x + cos(1?)) — 2 (sin(e*) — y) dA
I — JJpox Y ay Y
= / / 44+1dA =5 / / dA =107 (area of ellipse formula)
D JJp

This is contrived, but it would have been much harder to evaluate directly as a line integral.

1We will have to leave it as an article of faith that any simply-connected region D may be so decomposed.
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2. Calculate / (e +v)dx + (& — y) dy where C is formed
o

from the parabola y = 1 — x? and the x-axis as shown

The orientation of C is negative, so Green’s Theorem gets a
minus sign:

e 9 9
L) ar=— [] s -p - g +yaa

1 p1-x2 1
:/ / 1—262xdydx:/ (1—x?)(1 —2e¥) dx
-1.Jo -1

P SO e S S S S

1
_ o <x2 —_x— 2) +x— 3 Pt (integration by parts)
-1
4 1o 3.2
3 2 2

Simple-connectedness revisited We are now in a position to prove our simple formula: if F has
continuous partial derivatives on a simply-connected region D, then
d oP
F = Pi + Qj conservative <= Q =
ox 9y
Proof. Recall that F is conservative on D if and only if §-F- dr = 0 for all Cin D.

D simply-connected = interior D of every simple-closed curve C in D is also simply-connected.
By Green’s Theorem,

0Q 0P
F tive <= 0= § Pdx+Qdy= [[ 5<—5-da
conservative 2 x+Qdy 53 3y
for all such curves C. This says that [ 5 %—8 — %—I; dA = 0 independent of the domain D. This is only
possible if BQ = egJ everywhere.

Calculating Areas A powerful application of Green’s Theorem is to find the area inside a curve:

Theorem. If C is a positively oriented, simple, closed curve, then the area inside C is given by

1
d:—fd:—fd—d
fcxy ) ydx =3 § xdy - ydx

Proof. If D the interior of C then, by Green’s Theorem,

fxdy:// aax—aOdA:// dA, and,
e [0 2o o .



Examples
1. Find the area of the triangle with vertices (0,0), (1,1), (3,5)

Parameterizing with 0 < t < 1 each time, the triangle has three

parts
Ci:rn(t)=t(}) = dy=dt
C:nl)=t()+0-1(1)=(11) = dy=4dt
C:r3(t)=(1—-t) () = dy=—5dt

We thus calculate:

1 1
A:fxdy:/ t+4(3t+1—t>—5(3(1—t))dt:/ 24f —11dt = 1
C 0 0

The same answer can be found more easily using basic geometry.

2. Use Green’s Theorem to find the area of the ellipse
2P

Parameterizing with 0 <t < 27, we have

(bamr) = () =¢

dx
dy

acost
bsint

—asint
bcost

:x(t)

Therefore

) dt

N

1 r2rm
Azlfxdy—ydx:/ acost-bcost—bsint(—asint)dt
2 Jc 2 Jo

1 27
= E/ abdt = mab
0

Find the area of the asteroid
x2/3 4 y2/3 -1
Parameterizing with 0 < ¢t < 271, we have

= () = (8) = (

Therefore

3¢ dx

dy

—3sintcos?t
3costsin? t

COS
sin® ¢

) dt

g
)

N

1 1 r2rm
A= E% xdy —ydx = E/ cos®t - 3costsin®t — sin® t(—3sin t cos® t) dt
C 0

3 27 3 27
=5 / sin®tcos® tdt = 3 / sin? 2t dt
0 0

3 [ 3
= — 1-— 4tdt = -
16/0 cos4td 87‘(



Regions with holes Green’s Theorem can be modified to Cq
apply to non-simply-connected regions.

In the picture, the boundary curve has three pieces C = C; U

C, U C3 oriented so that region D is always on the left of the

boundary.

Join the curves together with cuts (traversed both directions)

to recover Green’s Theorem for a simply-connected region -

If the boundary of D is made up of n curves C = C; UCy U - - - U C,, all oriented so that D is on the
left, then

! 0Q P
/Cde—dey—Z_‘{/CidenLQdy—//D&C—aydA
Example Calculate the line integral [.xydx + dy where C = v 4

C1 U G5 is the curve shown.

The pieces of C are oriented correctly for Green’s Theorem:

/xydx+ dy:// —xdA 24 D

c R
4 r4-x td 2 (3-x 1d @
_/0/0 —xyx—/l/l —xdydx

4 2 -
:/x2—4xdx+/ 2x — x*dx = —10 0 o !
0 1 0 2 !
X
Winding Numbers Finally we return to our rotational vector field F = Pi + Qj = ﬁyz () from

the previous section. We can use Green’s Theorem to compute the line integral of F around any posi-
tively oriented, simple, closed curve surrounding the origin.

Let C be any such curve. Draw a circle S, of small radius ¢ inside C.
Apply Green’s Theorem to the region D between C and S, noting
that S, is oriented incorrectly for the theorem:

(7{57{5)1:'“://1)?3—?;(114:0

since aa—g = g—ly) everywhere. It follows that

%F-dr: F- dr
C S

for all curves C.




Parameterizing S, by r(t) = e (51), 0 < t < 27t gives

sint

27 Ceal el 27
j(F-dr: F-dr:/ 1 (—esint) feesint) [T g on
C S 0o € \ ecost ecost 0

The line integral around all such curves C is therefore 27t.

We already know that if C is closed and does not orbit the
origin O, then f c F- dr = 0. It follows that if C is any simple
closed curve in the plane which avoids the O, then

1
/CF-dr:/CW(xdy—ydx):Znn

where 1 is the nurriber ofltimes C orbits O counter-clockwise.

The integer n = 7 / r—z(x dy — y dx) is called the winding
C

number of C, and is an important concept in topology.

For example the orange curve has winding number 3, while
the blue has winding number —2.
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