
16.4 Green’s Theorem

Unless a vector field F is conservative, computing the line integral∫
C

F · dr =
∫

C
P dx + Q dy

is often difficult and time-consuming. For a given integral one must:

1. Split C into separate smooth subcurves C1, C2, C3.

2. Parameterize each curve Ci by a vector-valued function ri(t), ai ≤ t ≤ bi.

3. Evaluate each integral
∫

Ci
F · dr =

∫ bi
ai

F(ri(t)) · r′i(t)dt.

Thankfully there is a short-cut available for line integrals over particularly simple curves C.

Definition. A curve C is the planes is:

1. Closed if it starts and finishes at the same point.

2. Simple if it has no self-intersections; it does not cross itself.

3. Positively-oriented if the direction of travel around C is such that the inside of C is on one’s left.

A non-simple closed curve A positively oriented
simple closed curve

A negatively oriented
simple closed curve

Alternatively, a simple closed curve is positively oriented if one traverses it counter-clockwise. This
categorization can easily lead you astray however, so it is better to think about the inside.

Definition. The notation
∮

C
F · dr denotes a line integral around a positively

oriented, simple, closed curve C.

If D is a region, then its boundary curve is denoted ∂D.

Observe that D is simply-connected iff its boundary ∂D is simple and
closed.

C = ∂D

D

Theorem (Green’s Theorem). Let D be a simply-connected region of the plane with positively-oriented,
simple, closed, piecewise-smooth boundary C = ∂D. Suppose that P, Q have continuous partial derivatives on
some open region containing D and its boundary. Then∮

C
P(x, y)dx + Q(x, y)dy =

∫∫
D

∂Q
∂x
− ∂P

∂y
dA =

∫∫
D

Qx − Py dA
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Green’s theorem is often useful in examples since double integrals are typically easier to evaluate
than line integrals.

Example Find
∮

C
F · dr, where C is the square with corners (0,0),

(1,0), (1,1), (0,1), and

F(x, y) = (x3 + 1)i + (xy2 − 2)j

By Green’s Theorem,∮
C

F · dr =
∫∫

R

∂

∂x
(xy2 − 2)− ∂

∂y
(x3 + 1)dA

=
∫ 1

0

∫ 1

0
y2 dx dy =

1
3

0

1

y

0 1
x

D C

We could check this by evaluating the line integral directly. . .

Proof of Green’s Theorem. The proof has three stages. First prove half each of the theorem when the
region D is either Type 1 or Type 2. Putting these together proves the theorem when D is both type 1
and 2. The proof is completed by cutting up a general region into regions of both types.

First suppose that R is a region of Type 1

C consists of two, three, or four curves: y = f (x) and y = g(x)
between x = a and b and (possibly) two vertical edges at x = a, b.
On the straight edges x is constant and so dx = 0. Therefore∮

C
P(x, y)dx =

∫ b

a
P(x, f (x))dx +

∫ a

b
P(x, g(x))dx

=
∫ b

a
P(x, f (x))− P(x, g(x))dx

y

xa b

D
C

y = f (x)

y = g(x)

However∫∫
D

Py dA =
∫ b

a

∫ g(x)

f (x)
Py(x, y)dy dx =

∫ b

a
P(x, g(x))− P(x, f (x))dx = −

∮
C

P(x, y)dx

Hence
∮

C
P(x, y)dx = −

∫∫
D

Py dA which is half of the theorem.

Now suppose that R is a region of Type 2

Analogously to before, we compute∮
C

Q(x, y)dy =
∫ c

d
Q(j(y), y)dy +

∫ d

c
Q(k(y), y)dy

=
∫ d

c
Q(k(y), y)−Q(j(y), y)dy

=
∫ d

c

∫ k(y)

j(y)
Qx(x, y)dx dy =

∫∫
R

Qx dA

y

x

c

d

D

x = j(y)

C

x = k(y)
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This is the other half of the theorem. It follows that if D is a region of both Types 1 & 2 we have the
result:∮

C
P dx + Q dy =

∫∫
D

∂Q
∂x
− ∂P

∂y
dA

For general regions, cut D into pieces of both Types 1 & 2: line integrals along common edges are
counted in both directions and thus cancel.1

D C

D1

C1

D2

C2

D3

C3

D4

C4

For example, D1, . . . , D4 are of Types 1 & 2 so Green’s Theorem holds for each piece. Notice
however that all boundaries are traversed twice in opposite directions. For example, the curves C1
and C2 run opposite to each other on the common boundary of D1 and D2. It follows that the line
integrals along these pieces cancel each other out. Therefore∮

C
P dx + Q dy =

[∮
C1

+ · · ·+
∮

C4

]
P dx + Q dy

=

[∫∫
D1

+ · · ·+
∫∫

D4

]
∂Q
∂x
− ∂P

∂y
dA =

∫∫
D

∂Q
∂x
− ∂P

∂y
dA

Examples
1. Let C be the perimeter of the ellipse

x2

4
+ y2 = 1

and

F(x, y) =
(

sin(ex)− y
4x + cos(y2)

)
−1

−0.5

0

0.5

1y

−2 −1 0 1 2
x

D

C

Then ∮
C

F · dr =
∫∫

D

∂

∂x
(4x + cos(y2))− ∂

∂y
(sin(ex)− y)dA

=
∫∫

D
4 + 1 dA = 5

∫∫
D

dA = 10π (area of ellipse formula)

This is contrived, but it would have been much harder to evaluate directly as a line integral.
1We will have to leave it as an article of faith that any simply-connected region D may be so decomposed.
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2. Calculate
∫

C
(ex2

+ y)dx + (e2x − y)dy where C is formed

from the parabola y = 1− x2 and the x-axis as shown
The orientation of C is negative, so Green’s Theorem gets a
minus sign:

1
y

−1 0 1
x

C

D

∫
C

(
ex2

+y
e2x−y

)
· dr = −

∫∫
R

∂

∂x
(e2x − y)− ∂

∂y
(ex2

+ y)dA

=
∫ 1

−1

∫ 1−x2

0
1− 2e2x dy dx =

∫ 1

−1
(1− x2)(1− 2e2x)dx

= e2x
(

x2 − x− 1
2

)
+ x− 1

3
x3
∣∣∣∣1
−1

(integration by parts)

=
4
3
− 1

2
e2 − 3

2
e−2

Simple-connectedness revisited We are now in a position to prove our simple formula: if F has
continuous partial derivatives on a simply-connected region D, then

F = Pi + Qj conservative ⇐⇒ ∂Q
∂x

=
∂P
∂y

Proof. Recall that F is conservative on D if and only if
∮

C F · dr = 0 for all C in D.
D simply-connected =⇒ interior D̃ of every simple-closed curve C in D is also simply-connected.
By Green’s Theorem,

F conservative ⇐⇒ 0 =
∮

C
P dx + Q dy =

∫∫
D̃

∂Q
∂x
− ∂P

∂y
dA

for all such curves C. This says that
∫∫

D̃
∂Q
∂x − ∂P

∂y dA = 0 independent of the domain D̃. This is only

possible if ∂Q
∂x = ∂P

∂y everywhere.

Calculating Areas A powerful application of Green’s Theorem is to find the area inside a curve:

Theorem. If C is a positively oriented, simple, closed curve, then the area inside C is given by∮
C

x dy = −
∮

C
y dx =

1
2

∮
C

x dy− y dx

Proof. If D the interior of C then, by Green’s Theorem,∮
C

x dy =
∫∫

D

∂

∂x
x− ∂

∂y
0 dA =

∫∫
D

dA, and,

−
∮

C
y dx = −

∫∫
D

∂

∂x
0− ∂

∂y
y dA =

∫∫
D

dA
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Examples
1. Find the area of the triangle with vertices (0,0), (1,1), (3,5)

Parameterizing with 0 ≤ t ≤ 1 each time, the triangle has three
parts

C1 : r1(t) = t
(

1
1

)
=⇒ dy = dt

C2 : r2(t) = t
(

3
5

)
+ (1− t)

(
1
1

)
=
( 1+2t

1+4t

)
=⇒ dy = 4 dt

C3 : r3(t) = (1− t)
(

3
5

)
=⇒ dy = −5 dt

0

2

4

y

0 1 2 3
x

C1

C2
C3

We thus calculate:

A =
∮

C
x dy =

∫ 1

0
t + 4(3t + 1− t)− 5(3(1− t))dt =

∫ 1

0
24t− 11 dt = 1

The same answer can be found more easily using basic geometry.

2. Use Green’s Theorem to find the area of the ellipse

x2

a2 +
y2

b2 = 1

Parameterizing with 0 ≤ t ≤ 2π, we have

y

x

C

a−a

b

−b

C : r(t) =
(

a cos t
b sin t

)
=⇒

(
dx
dy

)
=
( −a sin t

b cos t

)
dt

Therefore

A =
1
2

∮
C

x dy− y dx =
1
2

∫ 2π

0
a cos t · b cos t− b sin t(−a sin t)dt

=
1
2

∫ 2π

0
ab dt = πab

3. Find the area of the asteroid

x2/3 + y2/3 = 1

Parameterizing with 0 ≤ t ≤ 2π, we have

C : r(t) =
(

cos3 t
sin3 t

)
=⇒

(
dx
dy

)
=
(
−3 sin t cos2 t
3 cos t sin2 t

)
dt

Therefore
−1

1y

−1 1
x

C

A =
1
2

∮
C

x dy− y dx =
1
2

∫ 2π

0
cos3 t · 3 cos t sin2 t− sin3 t(−3 sin t cos2 t)dt

=
3
2

∫ 2π

0
sin2 t cos2 t dt =

3
8

∫ 2π

0
sin2 2t dt

=
3
16

∫ 2π

0
1− cos 4t dt =

3
8

π
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Regions with holes Green’s Theorem can be modified to
apply to non-simply-connected regions.

In the picture, the boundary curve has three pieces C = C1 ∪
C2 ∪ C3 oriented so that region D is always on the left of the
boundary.
Join the curves together with cuts (traversed both directions)
to recover Green’s Theorem for a simply-connected region

If the boundary of D is made up of n curves C = C1 ∪ C2 ∪ · · · ∪ Cn all oriented so that D is on the
left, then∫

C
P dx + Q dy =

n

∑
i=1

∫
Ci

P dx + Q dy =
∫∫

D

∂Q
∂x
− ∂P

∂y
dA

Example Calculate the line integral
∫

C xy dx + dy where C =
C1 ∪ C2 is the curve shown.

The pieces of C are oriented correctly for Green’s Theorem:∫
C

xy dx + dy =
∫∫

R
−x dA

=
∫ 4

0

∫ 4−x

0
−x dy dx−

∫ 2

1

∫ 3−x

1
−x dy dx

=
∫ 4

0
x2 − 4x dx +

∫ 2

1
2x− x2 dx = −10 0

2

4y

0 2 4
x

C1

C2

D

Winding Numbers Finally we return to our rotational vector field F = Pi + Qj = 1
x2+y2 (

−y
x ) from

the previous section. We can use Green’s Theorem to compute the line integral of F around any posi-
tively oriented, simple, closed curve surrounding the origin.

Let C be any such curve. Draw a circle Sε of small radius ε inside C.
Apply Green’s Theorem to the region D between C and Sε, noting
that Sε is oriented incorrectly for the theorem:(∮

C
−
∮

Sε

)
F · dr =

∫∫
D

∂Q
∂x
− ∂P

∂y
dA = 0

since ∂Q
∂x = ∂P

∂y everywhere. It follows that∮
C

F · dr =
∮

Sε

F · dr

for all curves C.

y

x

C

Sε

D
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Parameterizing Sε by r(t) = ε ( cos t
sin t ) , 0 ≤ t ≤ 2π gives∮

C
F · dr =

∮
Sε

F · dr =
∫ 2π

0

1
ε2

(−ε sin t
ε cos t

)
·
(−ε sin t

ε cos t

)
dt =

∫ 2π

0
dt = 2π

The line integral around all such curves C is therefore 2π.

We already know that if C is closed and does not orbit the
origin O, then

∫
C F · dr = 0. It follows that if C is any simple

closed curve in the plane which avoids the O, then∫
C

F · dr =
∫

C

1
x2 + y2 (x dy− y dx) = 2πn

where n is the number of times C orbits O counter-clockwise.
The integer n =

1
2π

∫
C

1
r2 (x dy− y dx) is called the winding

number of C, and is an important concept in topology.
For example the orange curve has winding number 3, while
the blue has winding number −2.
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