
16. Vector Calculus 16.10. Summary and Applications

16.10 Summary and Applications

Before seeing some applications of vector calculus to Physics,
we note that vector calculus is easy, because. . .

There’s only one Theorem!

Green’s, Stokes’, and the Divergence Theorem are all higher
dimensional versions of the Fundamental Theorem of Calculus

More generally, there is a result known as Stokes’ Theorem
which is written ∫

∂M
α =

∫

M
dα

M is a manifold1, with boundary ∂M, α is a differential form2 and
dα is its exterior derivative3

1A (possibly) multi-dimensional place where calculus can be done
2These generalize the concepts of function and vector field
3A generalization of div, grad and curl
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We have seen five examples of this very general theorem: in
each case we need only interpret M, ∂M, α and dα

In each case α is a different object, but finding ‘d’ of it always
involves taking a meaningful derivative4

1 M = [a, b] ⊂ R and α = f , a function of one variable
Here ∂M = {a, b} and dα = df = f ′(x)dx
The general Stokes’ Theorem says

∫

∂M
f = f (b)− f (a) =

∫ b

a
f ′(x)dx =

∫

M
df ,

which is simply the Fundamental Theorem of Calculus

x
a b

∂M

︸ ︷︷ ︸
M

4The meaning of ‘d’ will be made clear in an advanced Differential
Geometry/Mathematical Physics (typically Relativity) course
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2 M = C a curve in Rn and α = f , a function of n variables
∂M is the two endpoints of C and dα = df = ∇f · dr
We recover the Fundamental Theorem of Line Integrals:
∫

∂M
f = f (end(C))− f (start(C)) =

∫

C
∇f · dr =

∫

M
df

∂M

M = C

∂M = C

M = D

3 M = D ⊂ R2 with boundary curve ∂M = C
α = P(x, y)dx + Q(x, y)dy = F · dr
Here dα = (Qx − Py)dx dy and we get Green’s Theorem:
∫

∂M
α =

∮

C
P dx + Q dy =

∫∫

D
(Qx − Py)dx dy =

∫

M
dα
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4 M = S ⊂ R3 a surface with boundary curve ∂M = C
α = P dx + Q dy + R dz = F · dr
Here dα = ∇× F · dS and we obtain Stokes’ Theorem:

∫

∂M
α =

∫

C
F · dr =

∫∫

S
∇× F · dS =

∫

M
dα

5 M = E ⊂ R3 a volume with boundary surface ∂M = S
α = F · n dS = F · dS
Here dα = ∇ · F dV from which we get the Divergence
Theorem:∫

∂M
α =

∫∫

S
F · dS =

∫∫∫

E
∇ · F dV =

∫

M
dα
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Physical Applications

Vector Calculus is the language of Physics

1 Many famous equations are direct consequences of one of
the Theorems of the course

2 Several equations are most conveniently written in terms
of vector calculus

We apply the Divergence Theorem to the problems of heat and
fluid flow and obtain fundamental equations

We also see Maxwell’s Equations, which are usually written in
the language of vector calculus

Finally we consider inverse square laws and Gauss’ Laws for
Gravitational and Electric fields
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The Heat Equation

Let E be a solid5 with temperature T(r, t) at position r, time t
The heat energy leaving E per unit time is the flux integral

∫∫

∂E
−k∇T · dS =

∫∫∫

E
−k∇2T dV

by the Divergence Theorem
Alternatively, the total heat energy in E is

∫∫∫
E ρσT dV, the rate

of change of which is negative the heat flow out of E:
∫∫∫

E
−k∇2T dV = − d

dt

∫∫∫

E
ρσT dV = −

∫∫∫

E
ρσ

∂T
∂t

dV

Since this holds for any volume E, the only possibility is that
the integrands are equal and we get the heat equation:

∂T
∂t

=
k

ρσ
∇2T

5With density ρ, conductivity k, and specific heat capacity σ
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The Continuity Equation

Suppose a fluid has density ρ(r, t) and velocity field v
The total mass of fluid in a region E is then m =

∫∫∫
E ρ dV

The rate of change of mass in E must be negative the flux
integral across the boundary

∂m
∂t

= −
∫∫

∂E
ρv · dS

Applying the Divergence Theorem we obtain

∂m
∂t

=
∫∫∫

E

∂ρ

∂t
dV = −

∫∫

∂E
ρv · dS = −

∫∫∫

E
∇ · (ρv)dV

and thus the continuity equation,6 a fundamental equation in
fluid mechanics

∂ρ

∂t
+∇ · (ρv) = 0

6If density is constant the equation becomes ∇ · v = 0 giving physical
meaning to the word incompressible
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Maxwell’s equations

These famous equations relate three vector fields: the electric
field E, the magnetic field B, and the current density J. The
remaining terms are constants.7

∇ · E =
ρ

ε0
(Gauss’ Law for electricity)

∇ · B = 0 (Gauss’ Law for magnetism)

∇× E = −∂B
∂t

(Faraday’s Law of induction)

∇× B =
1

ε0c2 J +
1
c2

∂E
∂t

(Ampère’s Law)

7ε0 is the permittivity of free space, c the speed of light, and ρ the charge
density
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Radial Vector Fields and Inverse Square Laws

Inverse square force laws pervade Physics:8 why?

Start with three physical assumptions about a force field F:

1 Force acts in the direction of, or away from, its source
2 Magnitude depends only on distance away from source
3 Material should not accumulate: the net flux out of any

region not containing the source should be zero

With the source at the origin, the first two conditions require
that F is radial: there is some function f such that

F = f (r)
r
r
, where r = |r| , and |F| = |f (r)|

According to the Divergence Theorem, the third condition is
equivalent to F being incompressible: i.e. div F = 0 for r 6= 0
I.e. there are no sources or sinks except at the origin

8E.g. Gravitation, Electromagnetism, etc. . .
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If F = f (r) r
r is to satisfy div F = 0, we compute:

∇ · F = ∇
(

f (r)
r

)
· r + f (r)

r
∇ · r = 1

r
d
dr

(
f (r)

r

)
r · r + 3

f (r)
r

=
rf ′(r) + 2f (r)

r
= 0 ⇐⇒ f (r) = kr−2

for some constant9 k =⇒ F is an inverse square field

For example the intensity of light energy from the sun is an
inverse square field: the flux (energy per second) across each of
the green surfaces is identical

9⇒ direction needs a little Differential Equations. . .
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Gauss’ Law
We compare the fluxes of an inverse
square field

F = kr−3r

across a surface S surrounding the origin
and a small sphere Sa of radius a inside S

Let E be the region between these
surfaces so that ∂E = S∪ Sa

If both surfaces are oriented outward then, by the Divergence
Theorem,

(∫∫

S
−
∫∫

Sa

)
F · dS =

∫∫∫

E
∇ · F dV = 0

Hence ∫∫

S
F · dS =

∫∫

Sa

F · dS
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It follows that
∫∫

S
F · dS =

∫∫

Sa

kr−2 r
r
· dS =

∫∫

Sa

kr−2 r
r
· r

r
dS

= ka−2
∫∫

Sa

dS = 4πk

independently of the choice of sphere Sa and surface S

This result is called Gauss’ Law for inverse square fields:

Theorem 16.10.1 (Gauss’ Law)

The flux of an inverse square field
F = kr−3r across any surface S enclosing
the origin is

∫∫

S
F · dS = 4πk
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Gravitation

Gauss’ Law makes it easy to consider the gravitational effect of
several masses or a distribution of masses:

Suppose we have a distribution of density ρ (kg·m−3) spread
over a region E and with total mass M =

∫∫∫
E ρ dV

The masses give rise to a gravitational force field F
By Newton, an infinitessimal mass ∆Mi at ri produces a
gravitational force10

∆Fi =
−G∆Mi

|r− ri|3
(r− ri)

By Gauss, the total flux from all the masses is
∫∫

∂E
F · dS = ∑

∫∫

∂E
∆Fi · dS = ∑−4πG∆Mi = −4πGM

10G ≈ 6.674× 10−11 N·m2kg−2 is the gravitational constant
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By the Divergence Theorem we have
∫∫∫

E
∇ · F dV =

∫∫

∂E
F · dS = −4πGM =

∫∫∫

E
−4πGρ dV

Since this holds for any region E, we conclude that

∇ · F = −4πGρ

This is known as Gauss’ Law of Gravitation

Gauss’ law makes the famous shell theorem
obvious: a spherical shell of uniform density
has no internal gravitational effect
Spherical mass distribution =⇒ F = f (r) r

r is
spherically symmetric with F(0) = 0
Then ∇ · F = 0 =⇒ f (r) = kr−2 ≡ 0

F = 0
inside
shell
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Descent to the Center of the Earth. . .

Suppose that the density ρ of the Earth is constant11

If F = f (r) r
r is the gravitational field at a distance r from the

center of the earth, then Gauss’ Law reads:

∇ · F = f ′(r) +
2f (r)

r
=

{
−4πGρ r < R
0 r > R

With a little differential equations, this can be solved to yield

f (r) =

{
− 4

3 πGρr r < R
− 4

3 πGρR3r−2 = −GMr−2 r > R
where R and M are the radius and mass of the Earth

Outside the Earth it is as if all the mass is at the center, but
inside the force decreases in magnitude until, at the center,
there is no gravitational effect

11It isn’t, but it’s not a dreadful assumption. There are many other models.

http://en.wikipedia.org/wiki/File:EarthGravityPREM.jpg
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Charge Distribution and Faraday Cages

Gauss’ Law also holds for charge: The electric field E generated
by a distribution of charge of density ρ (C·m−3) satisfies12

∇ · E =
ρ

ε0

The analogue of the shell theorem says that an electric field
external to a metal cage has no effect inside the cage: electrons
on the surface will arrange themselves in such a way that E = 0
inside
This technique is exploited by numerous applications, and
helps explain why radios and cell phones don’t work well in
(almost) metal boxes like cars and train carriages

12ε0 ≈ 8.854× 1012 F·m−1 (=C·V−1m−1) is the permittivity of free space

http://en.wikipedia.org/wiki/Faraday_cage
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