Math 2E Multi-Variable Calculus Pre-midterm Questions

16.2 Line Integrals

4 Evaluate the line integral $\int_{C} x \sin y d s$ where C is the line segment from $(0,3)$ to $(4,6)$.
8 Evaluate the line integral $\int_{C} x^{2} \mathrm{~d} x+y^{2} \mathrm{~d} y$ where C consists of the $\frac{1}{4}$-arc of the circle $x^{2}+y^{2}=4$ from $(2,0)$ to $(0,2)$ followed by the line segment from $(0,2)$ to $(4,3)$.

10 Evaluate the line integral $\int_{C} x y z^{2} \mathrm{~d} s$ where C is the line segment from $(-1,5,0)$ to $(1,6,4)$.
14 Evaluate the line integral $\int_{C} y \mathrm{~d} x+z \mathrm{~d} y+x \mathrm{~d} z$ where C is parameterized by

$$
x=\sqrt{t}, \quad y=t, \quad z=t^{2}, \quad \text { for } 1 \leq t \leq 4 .
$$

20 Evaluate the line integral $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$, where $\mathbf{F}(x, y, z)=(x+y) \mathbf{i}+(y-z) \mathbf{j}+z^{2} \mathbf{k}$, and C is parameterized by $\mathbf{r}(t)=t^{2} \mathbf{i}+t^{3} \mathbf{j}+t^{2} \mathbf{k}$ for $0 \leq t \leq 1$.
22 Evaluate the line integral $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$, where $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+x y \mathbf{k}$, and C is parameterized by $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}$ for $0 \leq t \leq \pi$.
28 Use a graph of the vector field $\mathbf{F}(x, y)=\frac{1}{\sqrt{x^{2}+y^{2}}}\binom{x}{y}$ and the curve C, the parabola $y=1+x^{2}$ from $(-1,2)$ to $(1,2)$, to guess whether the line integral $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$ is positive, negative or zero. Then evaluate the line integral.
32 (a) Find the work done by the force field $\mathbf{F}(x, y)=x^{2} \mathbf{i}+x y \mathbf{j}$ on a particle that moves once around the circle $x^{2}+y^{2}=4$ oriented counter-clockwise.
(b) Sketch a graph of the force field and the circle. Use it to explain your answer to part (a).

40 Find the work done by the force field $\mathbf{F}(x, y)=x^{2} \mathbf{i}+y e^{x} \mathbf{j}$ on a particle that moves along the parabola $x=y^{2}+1$ from $(1,0)$ to $(2,1)$.

42 The force exerted by an electric charge at the origin on a charged particle at a point (x, y, z) with position vector $\mathbf{r}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ is

$$
\mathbf{F}(\mathbf{r})=\frac{K \mathbf{r}}{|\mathbf{r}|^{3}}
$$

where K is a constant. Find the work done as the particle moves along a straight line from $(2,0,0)$ to $(2,1,5)$.

44 An object with mass m moves with position function $\mathbf{r}(t)=a \sin t \mathbf{i}+b \cos t \mathbf{j}+c t \mathbf{k}$ for $0 \leq t \leq$ $\frac{\pi}{2}$. Find the work done (by gravity) on the object during this time period.
48 The base of a circular fence of radius 10 m is given by $x=10 \cos t, y=10 \sin t$. The height of the fence at position (x, y) is given by the function $h(x, y)=4+0.01\left(x^{2}-y^{2}\right)$, so the height varies from 3 m to 5 m . Suppose that 1 L of paint covers $100 \mathrm{~m}^{2}$. Sketch the fence and determine how much paint you will need if you paint both sides of the fence.

50 If C is a smooth curve given by a vector function $\mathbf{r}(t)$ for $a \leq t \leq b$, show that

$$
\int_{C} \mathbf{r} \cdot \mathrm{~d} \mathbf{r}=\frac{1}{2}\left[|\mathbf{r}(b)|^{2}-|\mathbf{r}(a)|^{2}\right] .
$$

16.3 The Fundamental Theorem for Line Integrals

4-8 Determine whether \mathbf{F} is a conservative vector field. If it is, find a function f such that $\mathbf{F}=\nabla f$.
$4 \mathbf{F}(x, y)=e^{x} \sin y \mathbf{i}+e^{x} \cos y \mathbf{j}$
$6 \mathbf{F}(x, y)=\left(3 x^{2}-2 y^{2}\right) \mathbf{i}+(4 x y+3) \mathbf{j}$
$8 \mathbf{F}(x, y)=\left(2 x y+y^{-2}\right) \mathbf{i}+\left(x^{2}-2 x y^{-3}\right) \mathbf{j}, y>0$
12-18 (a) Find a function f such that $\mathbf{F}=\nabla f$ and (b) use part (a) to evaluate $\int_{C} \mathbf{F} \cdot \mathrm{dr}$ along the given curve C
$12 \mathbf{F}(x, y)=x^{2} \mathbf{i}+y^{2} \mathbf{j}$. C is the arc of the parabola $y=2 x^{2}$ from $(-1,2)$ to $(2,8)$.
$16 \mathbf{F}(x, y, z)=\left(y^{2} z+2 x z^{2}\right) \mathbf{i}+2 x y z \mathbf{j}+\left(x y^{2}+2 x^{2} z\right) \mathbf{k} \cdot C: x=\sqrt{t}, y=t+1, z=t^{2}, 0 \leq t \leq 1$.
$18 \mathbf{F}(x, y, z)=\sin y \mathbf{i}+(x \cos y+\cos z) \mathbf{j}-y \sin z \mathbf{k} . C: \mathbf{r}(t)=\sin t \mathbf{i}+t \mathbf{j}+2 t \mathbf{k}, 0 \leq t \leq \frac{\pi}{2}$.
20 Show that the integral $\int_{C} \sin y \mathrm{~d} x+(x \cos y-\sin y) \mathrm{d} y$ is independent of path and evaluate it if C is any path from $(2,0)$ to $(1, \pi)$.
22 Suppose an experiment determines that the amount of work required for a force field \mathbf{F} to move a particle from the point $(1,2)$ to the point $(5,-3)$ along a curve C_{1} is 1.2 J and the work done by \mathbf{F} in moving the particle along another curve C_{2} between the same two points is 1.4 J . What can you say about F? Why?
24 Find the work done by the force field $\mathbf{F}=e^{-y} \mathbf{i}-x e^{-y} \mathbf{j}$ in moving a particle from $(0,1)$ to $(2,0)$.
30 Show that the line integral $\int_{C} y \mathrm{~d} x+x \mathrm{~d} y+x y z \mathrm{~d} z$ is not independent of path.
32,34 Determine whether the given set is (a) open, (b) connected, and (c) simply-connected.
$32\{(x, y): 1<|x|<2\}$
$34\{(x, y):(x, y) \neq(2,3)\}$
36 (a) Suppose that \mathbf{F} is an inverse square force field, that is,

$$
\mathbf{F}(\mathbf{r})=\frac{c \mathbf{r}}{|\mathbf{r}|^{3}}=\frac{c}{r^{3}} \mathbf{r}
$$

for some constant c, where $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and $r=|\mathbf{r}|$. Find the work done in moving an object from a point P_{1} along a path to a point P_{2} in terms of the distances d_{1} and d_{2} from these points to the origin.
(b) An example of an inverse square field is the gravitational field $\mathbf{F}=-\frac{G M m}{r^{3}} \mathbf{r}$. Use part (a) to find the work done by the gravitational field when the earth moves from aphelion (at a maximum distance of $1.52 \times 10^{11} \mathrm{~m}$ from the sun) to perihelion (at a minimum distance of $1.47 \times 10^{11} \mathrm{~m}$). Use the values $m=5.97 \times 10^{24} \mathrm{~kg}, M=1.99 \times 10^{30} \mathrm{~kg}$, and $G=$ $6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$.
(c) Another example of an inverse square field is the electric force field $\mathbf{F}=\frac{\varepsilon q Q}{r^{3}} \mathbf{r}$. Suppose that an electron with a charge of $Q=-1.6 \times 10^{-19} \mathrm{C}$ is located at the origin. A proton with charge $q=1.6 \times 10^{-19} \mathrm{C}$ is positioned a distance $10^{-12} \mathrm{~m}$ from the electron and moves to a position half that distance from the electron. Use part (a) to find the work done by the electric force field. Use the value $\varepsilon=8.985 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$.

16.4 Green's Theorem

2, 4 Evaluate the line integral by two methods: (a) directly and (b) using Green's Theorem
$2 \oint_{C} x y \mathrm{~d} x+x^{2} \mathrm{~d} y . C$ is the rectangle with vertices $(0,0),(3,0),(3,1)$, and $(0,1)$.
$4 \oint_{C} x^{2} y^{2} \mathrm{~d} x+x y \mathrm{~d} y$. C consists of the arc of the parabola $y=x^{2}$ from $(0,0)$ to $(1,1)$ and the line segments from $(1,1)$ to $(0,1)$ and from $(0,1)$ to $(0,0)$.

6, 10 Use Green's Theorem to evaluate the line integral along the positively oriented curve given
$6 \oint_{C} \cos y \mathrm{~d} x+x^{2} \sin y \mathrm{~d} y . C$ is the rectangle with vertices $(0,0),(5,0),(5,2)$, and $(0,2)$.
$10 \oint_{C}\left(1-y^{3}\right) \mathrm{d} x+\left(x^{3}+e^{y^{2}}\right) \mathrm{d} y$. C is the boundary of the region between the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=9$.

12, 14 Use Green's Theorem to evaluate $\int_{C} \mathbf{F} \cdot \mathrm{dr}$. Check the orientation of the curve before applying the theorem.
$12 \mathbf{F}(x, y)=\left(e^{-x}+y^{2}\right) \mathbf{i}+\left(e^{-y}+x^{2}\right) \mathbf{j}$. C consists of the arc of the curve $y=\cos x$ from $(-\pi / 2,0)$ to $(\pi / 2,0)$ and the line segment from $(\pi / 2,0)$ to $(-\pi / 2,0)$.
$14 \mathbf{F}(x, y)=\sqrt{x^{2}+1} \mathbf{i}+\tan ^{-1} x \mathbf{j}$. C is the triangle from $(0,0)$ to $(1,1)$ to $(0,1)$ to $(0,0)$.
18 A particle starts at the point $(-2,0)$, moves along the x-axis to $(2,0)$, and then along the semicircle $y=\sqrt{4-x^{2}}$ to the starting point. Use Green's Theorem to find the work done on this particle by the force field $\mathbf{F}(x, y)=x \mathbf{i}+\left(x^{3}+3 x y^{2}\right) \mathbf{j}$.

20-28 Not covered on Midterm. Will be on Final Exam.
20 If a circle C with radius 1 rolls along the outside of the circle $x^{2}+y^{2}=16$, a fixed point P on C traces out a curve called an epicycloid, with parametric equations $x=5 \cos t-\cos 5 t$, $y=5 \sin t-\sin 5 t$. Graph the epicycloid and use a line integral to calculate the area it encloses.

22 Let D be a region bounded by a simple closed path C in the $x y$-plane. Use Green's Theorem to prove that the co-ordinates of the centroid (\bar{x}, \bar{y}) of D are

$$
\bar{x}=\frac{1}{2 A} \oint_{C} x^{2} \mathrm{~d} y, \quad \bar{y}=-\frac{1}{2 A} \oint_{C} y^{2} \mathrm{~d} x
$$

where A is the area of D.
24 Use question 22 to find the centroid of a triangle with vertices $(0,0),(a, 0)$, and (a, b), where $a, b>0$.

28 Calculate $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$, where $\mathbf{F}(x, y)=\left(x^{2}+y\right) \mathbf{i}+\left(3 x-y^{2}\right) \mathbf{j}$ and C is the positively oriented boundary curve of a region D that has area 6 .

