Math 2E Multi-Variable Calculus Pre-midterm Questions

16.2 Line Integrals

- 4 Evaluate the line integral $\int_C x \sin y \, ds$ where *C* is the line segment from (0,3) to (4,6).
- 8 Evaluate the line integral $\int_C x^2 dx + y^2 dy$ where *C* consists of the $\frac{1}{4}$ -arc of the circle $x^2 + y^2 = 4$ from (2,0) to (0,2) followed by the line segment from (0,2) to (4,3).
- 10 Evaluate the line integral $\int_C xyz^2 ds$ where C is the line segment from (-1, 5, 0) to (1, 6, 4).
- 14 Evaluate the line integral $\int_C y \, dx + z \, dy + x \, dz$ where *C* is parameterized by

$$x = \sqrt{t}$$
, $y = t$, $z = t^2$, for $1 \le t \le 4$.

- 20 Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = (x + y)\mathbf{i} + (y z)\mathbf{j} + z^2\mathbf{k}$, and *C* is parameterized by $\mathbf{r}(t) = t^2\mathbf{i} + t^3\mathbf{j} + t^2\mathbf{k}$ for $0 \le t \le 1$.
- 22 Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} + xy\mathbf{k}$, and *C* is parameterized by $\mathbf{r}(t) = \cos t\mathbf{i} + \sin t\mathbf{j} + t\mathbf{k}$ for $0 \le t \le \pi$.
- 28 Use a graph of the vector field $\mathbf{F}(x, y) = \frac{1}{\sqrt{x^2 + y^2}} \begin{pmatrix} x \\ y \end{pmatrix}$ and the curve *C*, the parabola $y = 1 + x^2$ from (-1,2) to (1,2), to guess whether the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ is positive, negative or zero. Then evaluate the line integral.
- 32 (a) Find the work done by the force field $\mathbf{F}(x, y) = x^2 \mathbf{i} + xy \mathbf{j}$ on a particle that moves once around the circle $x^2 + y^2 = 4$ oriented counter-clockwise.
 - (b) Sketch a graph of the force field and the circle. Use it to explain your answer to part (a).
- 40 Find the work done by the force field $\mathbf{F}(x, y) = x^2 \mathbf{i} + y e^x \mathbf{j}$ on a particle that moves along the parabola $x = y^2 + 1$ from (1,0) to (2,1).
- 42 The force exerted by an electric charge at the origin on a charged particle at a point (x, y, z) with position vector $\mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ is

$$\mathbf{F}(\mathbf{r}) = \frac{K\mathbf{r}}{\left|\mathbf{r}\right|^3}$$

where *K* is a constant. Find the work done as the particle moves along a straight line from (2,0,0) to (2,1,5).

- 44 An object with mass *m* moves with position function $\mathbf{r}(t) = a \sin t \mathbf{i} + b \cos t \mathbf{j} + ct \mathbf{k}$ for $0 \le t \le \frac{\pi}{2}$. Find the work done (by gravity) on the object during this time period.
- 48 The base of a circular fence of radius 10 m is given by $x = 10 \cos t$, $y = 10 \sin t$. The height of the fence at position (x, y) is given by the function $h(x, y) = 4 + 0.01(x^2 y^2)$, so the height varies from 3 m to 5 m. Suppose that 1 L of paint covers 100 m². Sketch the fence and determine how much paint you will need if you paint both sides of the fence.
- 50 If *C* is a smooth curve given by a vector function $\mathbf{r}(t)$ for $a \le t \le b$, show that

$$\int_C \mathbf{r} \cdot d\mathbf{r} = \frac{1}{2} \left[|\mathbf{r}(b)|^2 - |\mathbf{r}(a)|^2 \right].$$

16.3 The Fundamental Theorem for Line Integrals

- 4–8 Determine whether **F** is a conservative vector field. If it is, find a function *f* such that $\mathbf{F} = \nabla f$.
 - 4 $\mathbf{F}(x, y) = e^x \sin y \mathbf{i} + e^x \cos y \mathbf{j}$

6
$$\mathbf{F}(x,y) = (3x^2 - 2y^2)\mathbf{i} + (4xy + 3)\mathbf{j}$$

8
$$\mathbf{F}(x,y) = (2xy + y^{-2})\mathbf{i} + (x^2 - 2xy^{-3})\mathbf{j}, y > 0$$

- 12–18 (a) Find a function f such that $\mathbf{F} = \nabla f$ and (b) use part (a) to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ along the given curve C
 - 12 $F(x, y) = x^2 i + y^2 j$. *C* is the arc of the parabola $y = 2x^2$ from (-1, 2) to (2, 8).

16
$$\mathbf{F}(x, y, z) = (y^2 z + 2xz^2)\mathbf{i} + 2xyz\mathbf{j} + (xy^2 + 2x^2z)\mathbf{k}$$
. C: $x = \sqrt{t}$, $y = t + 1$, $z = t^2$, $0 \le t \le 1$.

- 18 $\mathbf{F}(x, y, z) = \sin y \mathbf{i} + (x \cos y + \cos z) \mathbf{j} y \sin z \mathbf{k}$. C: $\mathbf{r}(t) = \sin t \mathbf{i} + t \mathbf{j} + 2t \mathbf{k}$, $0 \le t \le \frac{\pi}{2}$.
- 20 Show that the integral $\int_C \sin y \, dx + (x \cos y \sin y) \, dy$ is independent of path and evaluate it if *C* is any path from (2,0) to (1, π).
- 22 Suppose an experiment determines that the amount of work required for a force field **F** to move a particle from the point (1, 2) to the point (5, -3) along a curve C_1 is 1.2 J and the work done by **F** in moving the particle along another curve C_2 between the same two points is 1.4 J. What can you say about **F**? Why?
- 24 Find the work done by the force field $\mathbf{F} = e^{-y}\mathbf{i} xe^{-y}\mathbf{j}$ in moving a particle from (0, 1) to (2, 0).
- 30 Show that the line integral $\int_C y \, dx + x \, dy + xyz \, dz$ is not independent of path.
- 32, 34 Determine whether the given set is (a) open, (b) connected, and (c) simply-connected.

32 {
$$(x,y): 1 < |x| < 2$$
}

- 34 { $(x,y): (x,y) \neq (2,3)$ }
- 36 (a) Suppose that **F** is an inverse square force field, that is,

$$\mathbf{F}(\mathbf{r}) = \frac{c\mathbf{r}}{|\mathbf{r}|^3} = \frac{c}{r^3}\mathbf{r}$$

for some constant *c*, where $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and $r = |\mathbf{r}|$. Find the work done in moving an object from a point P_1 along a path to a point P_2 in terms of the distances d_1 and d_2 from these points to the origin.

- (b) An example of an inverse square field is the gravitational field $\mathbf{F} = -\frac{GMm}{r^3}\mathbf{r}$. Use part (a) to find the work done by the gravitational field when the earth moves from aphelion (at a maximum distance of 1.52×10^{11} m from the sun) to perihelion (at a minimum distance of 1.47×10^{11} m). Use the values $m = 5.97 \times 10^{24}$ kg, $M = 1.99 \times 10^{30}$ kg, and $G = 6.67 \times 10^{-11}$ Nm²/kg².
- (c) Another example of an inverse square field is the electric force field $\mathbf{F} = \frac{\epsilon q Q}{r^3} \mathbf{r}$. Suppose that an electron with a charge of $Q = -1.6 \times 10^{-19}$ C is located at the origin. A proton with charge $q = 1.6 \times 10^{-19}$ C is positioned a distance 10^{-12} m from the electron and moves to a position half that distance from the electron. Use part (a) to find the work done by the electric force field. Use the value $\varepsilon = 8.985 \times 10^9$ Nm²/C².

16.4 Green's Theorem

- 2, 4 Evaluate the line integral by two methods: (a) directly and (b) using Green's Theorem
 - 2 $\oint_C xy \, dx + x^2 \, dy$. *C* is the rectangle with vertices (0,0), (3,0), (3,1), and (0,1).
 - 4 $\oint_C x^2 y^2 dx + xy dy$. *C* consists of the arc of the parabola $y = x^2$ from (0,0) to (1,1) and the line segments from (1,1) to (0,1) and from (0,1) to (0,0).
- 6, 10 Use Green's Theorem to evaluate the line integral along the positively oriented curve given
 - 6 $\oint_C \cos y \, dx + x^2 \sin y \, dy$. *C* is the rectangle with vertices (0,0), (5,0), (5,2), and (0,2).
 - 10 $\oint_C (1-y^3) dx + (x^3 + e^{y^2}) dy$. *C* is the boundary of the region between the circles $x^2 + y^2 = 4$ and $x^2 + y^2 = 9$.
- 12, 14 Use Green's Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$. Check the orientation of the curve before applying the theorem.
 - 12 $\mathbf{F}(x,y) = (e^{-x} + y^2)\mathbf{i} + (e^{-y} + x^2)\mathbf{j}$. *C* consists of the arc of the curve $y = \cos x$ from $(-\pi/2, 0)$ to $(\pi/2, 0)$ and the line segment from $(\pi/2, 0)$ to $(-\pi/2, 0)$.
 - 14 $\mathbf{F}(x, y) = \sqrt{x^2 + 1}\mathbf{i} + \tan^{-1}x\mathbf{j}$. *C* is the triangle from (0,0) to (1,1) to (0,1) to (0,0).
 - 18 A particle starts at the point (-2, 0), moves along the *x*-axis to (2, 0), and then along the semicircle $y = \sqrt{4 - x^2}$ to the starting point. Use Green's Theorem to find the work done on this particle by the force field $\mathbf{F}(x, y) = x\mathbf{i} + (x^3 + 3xy^2)\mathbf{j}$.
- 20–28 Not covered on Midterm. Will be on Final Exam.
 - 20 If a circle *C* with radius 1 rolls along the outside of the circle $x^2 + y^2 = 16$, a fixed point *P* on *C* traces out a curve called an *epicycloid*, with parametric equations $x = 5 \cos t \cos 5t$, $y = 5 \sin t \sin 5t$. Graph the epicycloid and use a line integral to calculate the area it encloses.
 - 22 Let *D* be a region bounded by a simple closed path *C* in the *xy*-plane. Use Green's Theorem to prove that the co-ordinates of the centroid $(\overline{x}, \overline{y})$ of *D* are

$$\overline{x} = \frac{1}{2A} \oint_C x^2 \, \mathrm{d}y, \quad \overline{y} = -\frac{1}{2A} \oint_C y^2 \, \mathrm{d}x$$

where *A* is the area of *D*.

- 24 Use question 22 to find the centroid of a triangle with vertices (0,0), (a,0), and (a,b), where a, b > 0.
- 28 Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y) = (x^2 + y)\mathbf{i} + (3x y^2)\mathbf{j}$ and *C* is the positively oriented boundary curve of a region *D* that has area 6.