Math 2E Multi-Variable Calculus Homework Questions 2

15.8 Triple Integrals in Cylindrical Co-ordinates

4 Convert the points $(2 \sqrt{3}, 2,-1)$ and $(4,-3,2)$ from rectangular to cylindrical co-ordinates.
8 Identify the surface with equation $2 r^{2}+z^{2}=1$.
18 Evaluate $\iiint_{E} z \mathrm{~d} V$, where E is enclosed by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=4$.
22 Find the volume of the solid that lies within both the cylinder $x^{2}+y^{2}=1$ and the sphere $x^{2}+y^{2}+z^{2}=4$.
28 Find the mass of a ball B given by $x^{2}+y^{2}+z^{2} \leq a^{2}$, if the density at any point is proportional to its distance from the z-axis.

30 Evaluate the following integral by changing to cylindrical co-ordinates:

$$
\int_{-3}^{3} \int_{0}^{\sqrt{9-x^{2}}} \int_{0}^{9-x^{2}-y^{2}} \sqrt{x^{2}+y^{2}} \mathrm{~d} z \mathrm{~d} y \mathrm{~d} x
$$

15.9 Triple Integrals in Spherical Polar Co-ordinates

8 Identify the surface whose equation is given in spherical co-ordinates by

$$
\rho^{2}\left(\sin ^{2} \phi \sin ^{2} \theta+\cos ^{2} \phi\right)=9
$$

18 Sketch the solid whose volume is given by the following integral, and evaluate it:

$$
\int_{0}^{2 \pi} \int_{\pi / 2}^{\pi} \int_{1}^{2} \rho^{2} \sin \phi \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta
$$

22 Use spherical co-ordinates to evaluate

$$
\iiint_{H} 9-x^{2}-y^{2} \mathrm{~d} V
$$

where H is the solid hemisphere $x^{2}+y^{2}+z^{2} \leq 9, z \geq 0$.
26 Use spherical co-ordinates to evaluate

$$
\iiint_{E} x y z \mathrm{~d} V
$$

where E lies between the spheres $\rho=2$ and $\rho=4$ and above the cone $\phi=\pi / 3$.
30 Find the volume of the solid that lies within the sphere $x^{2}+y^{2}+z^{2}=4$, above the $x y$-plane, and below the cone $z=\sqrt{x^{2}+y^{2}}$.
40 Evaluate the following integral by changing to spherical co-ordiantes

$$
\int_{-a}^{a} \int_{-\sqrt{a^{2}-y^{2}}}^{\sqrt{a^{2}-y^{2}}} \int_{-\sqrt{a^{2}-x^{2}-y^{2}}}^{\sqrt{a^{2}-x^{2}-y^{2}}}\left(x^{2} z+y^{2} z+z^{3}\right) \mathrm{d} z \mathrm{~d} x \mathrm{~d} y
$$

15.10 Change of Variables in Multiple Integrals

4 Find the Jacobian of the transformation

$$
x=e^{s+t}, \quad y=e^{s-t} .
$$

6 Find the Jacobian of the transformation

$$
x=v+w^{2}, \quad y=w+u^{2}, \quad z=u+v^{2} .
$$

14 Let R be bounded by the hyperbolas $y=1 / x, y=4 / x$ and the lines $y=x$ and $y=4 x$ in the first quadrant. Find equations for a transformation T that maps a rectangular region S in the $u v$-plane onto R, where the sides of S are parallel to the u - and v-axes.

16 Let R be the parallelogram with corners $(-1,3),(1,-3),(3,-1)$ and $(1,5)$. Evaluate the integral

$$
\iint_{R} 4 x+8 y \mathrm{~d} A
$$

by using the change of variables $x=\frac{1}{4}(u+v), y=\frac{1}{4}(v-3 u)$.
20 Let R be the region bounded by the curves $x y=1, x y=2, x y^{2}=1$ and $x y^{2}=2$. Evaluate the integral

$$
\iint_{R} y^{2} \mathrm{~d} A
$$

by using the change of variables $u=x y, v=x y^{2}$.
24 Make a suitable change of variables to evaluate the integral $\iint_{R}(x+y) e^{x^{2}-y^{2}} \mathrm{~d} A$, where R is the rectangle enclosed by the lines $x-y=0, x-y=2, x+y=0$ and $x+y=3$.

16 Vector Calculus

16.1 Vector Fields

22 Find the gradient field of the function $f(x, y)=\boldsymbol{\operatorname { t a n }}(3 x-4 y)$.
24 Find the gradient field of the function $f(x, y, z)=x \ln (y-2 z)$.
26 Find the gradient field ∇f of $f(x, y)=\sqrt{x^{2}+y^{2}}$ and sketch it.
34 At time $t=1$ a particle is located at position $(1,3)$. If it moves in a velocity field

$$
\mathbf{F}(x, y)=\binom{x y-2}{y^{2}-10}
$$

find its approximate location at time $t=1.05$.
35 (Non-examinable: for those who have taken Math 3D) The flow lines (or streamlines) of a vector field are the paths followed by a particle whose velocity field is the given vector field. Thus the vectors in a vector field are tangent to the flow lines.
(a) Use a sketch of the vector field $\mathbf{F}(x, y)=x \mathbf{i}-y \mathbf{j}$ to draw some flow lines. From your sketches, can you guess the equations of the flow lines?
(b) If the parametric equations of a flow line are $x=x(t), y=y(t)$, explain why these functions must satisfy the differential equations $\frac{\mathrm{d} x}{\mathrm{~d} t}=x$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}=-y$. Solve the differential equations to find an equation of the flow line that passes through the point $(1,1)$.

36 (a) Sketch the vector field $\mathbf{F}(x, y)=\mathbf{i}+x \mathbf{j}$ and then sketch some flow lines. What shape do these lines appear to have?
(b) If the parametric equations of a flow line are $x=x(t), y=y(t)$, what differential equations must these functions satisfy? Deduce that $\frac{\mathrm{d} y}{\mathrm{~d} x}=x$.
(c) If a particle starts at the origin in the velocity field given by \mathbf{F}, find an equation of the path it follows.

