16.7 Surface Integrals

6–18 Evaluate the surface integral

6 $\iint_S xyz \, dS$ where S is the cone with parametric equations

 $x = u \cos v, \quad y = u \sin v, \quad z = u, \quad 0 \le u \le 1, \quad 0 \le v \le \pi/2$

- 10 $\iint_S xz \, dS$ where S is the part of the plane 2x + 2y + z = 4 that lies in the first octant.
- 12 $\iint_{S} y \, dS$ where *S* is the surface $z = \frac{2}{3}(x^{3/2} + y^{3/2}), \ 0 \le x, y \le 1$.
- 18 $\iint_S xz \, dS$ where *S* is the boundary of the region enclosed by the cylinder $y^2 + z^2 = 9$ and the planes x = 0 and x + y = 5.
- 22–32 Evaluate the surface integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$ for the given vector field \mathbf{F} and oriented surface S. In other words, find the flux of \mathbf{F} across S. For closed surfaces use the positive (outward) orientation
 - 22 $\mathbf{F}(x, y, z) = z\mathbf{i} + y\mathbf{j} + x\mathbf{k}$, *S* is the helicoid with vector equation

 $\mathbf{r}(u,v) = u\cos v\mathbf{i} + u\sin v\mathbf{j} + v\mathbf{k}, \quad 0 \le u \le 1, \quad 0 \le v \le \pi$

with upward orientation.

- 26 $\mathbf{F}(x, y, z) = xz\mathbf{i} + x\mathbf{j} + y\mathbf{k}$, *S* is the hemisphere $x^2 + y^2 + z^2 = 25$, $y \ge 0$, oriented in the direction of the positive *y*-axis.
- 28 $\mathbf{F}(x, y, z) = xy\mathbf{i} + 4x^2\mathbf{j} + yz\mathbf{k}$, *S* is the surface $z = xe^y$, $0 \le x, y \le 1$, with upward orientation.
- 32 $\mathbf{F}(x, y, z) = y\mathbf{i} + (z y)\mathbf{j} + x\mathbf{k}$, *S* is the surface of the tetrahedron with vertices (0,0,0), (1,0,0), (0,1,0), and (0,0,1).
- 40 Find the mass of a thin funnel in the shape of a cone $z = \sqrt{x^2 + y^2}$ for $1 \le z \le 4$, if its density function is $\rho(x, y, z) = 10 z$.
- 44 Seawater has density 1025 kg/m³ and flows in a velocity field $\mathbf{v} = y\mathbf{i} + x\mathbf{j}$ where *x*, *y*, *z* are measured in meters and the components of \mathbf{v} in meters per second. Find the rate of flow outward through the hemisphere $x^2 + y^2 + z^2 = 9$, $z \ge 0$.
- 46 The temperature at a point in a ball with conductivity *k* is inversely proportional to the distance from the center of the ball. Find the rate of heat flow across a a sphere *S* of radius *a* with center at the center of the ball.

16.8 Stokes' Theorem

- 2–6 Use Stokes' Theorem to evaluate $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$
 - 2 $\mathbf{F}(x, y, z) = 2y \cos z \mathbf{i} + e^x \sin z \mathbf{j} + x e^y \mathbf{k}$ where *S* is the hemisphere $x^2 + y^2 + z^2 = 9$ with $z \ge 0$, oriented upward
 - 4 $\mathbf{F}(x, y, z) = \tan^{-1}(x^2yz^2)\mathbf{i} + x^2y\mathbf{j} + x^2z^2\mathbf{k}$ where *S* is the cone $x = \sqrt{y^2 + z^2}$ with $0 \le x \le 2$, oriented in the direction of the positive *x*-axis
 - 6 $\mathbf{F}(x, y, z) = e^{xy}\mathbf{i} + e^{xz}\mathbf{j} + x^2z\mathbf{k}$ where *S* is the half of the ellipsoid $4x^2 + y^2 + 4z^2 = 4$ to the right of the *xz*-plane, oriented in the direction of the positive *y*-axis
- 8, 10 Use Stokes' Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$. In both cases *C* is oriented counterclockwise when viewed from above.
 - 8 $\mathbf{F}(x, y, z) = \mathbf{i} + (x + yz)\mathbf{j} + (xy \sqrt{z})\mathbf{k}$ where *C* is the boundary of the part of the plane 3x + 2y + z = 1 in the first octant
 - 10 $\mathbf{F}(x, y, z) = xy\mathbf{i} + 2z\mathbf{j} + 3y\mathbf{k}$ where *C* is the curve of intersection of the plane x + z = 5 and the cylinder $x^2 + y^2 = 9$
 - 12 (a) Use Stokes' Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(x, y, z) = x^2 y \mathbf{i} + \frac{1}{3} x^3 \mathbf{j} + xy \mathbf{k}$ and *C* is the curve of intersection of the hyperbolic paraboloid $z = y^2 x^2$ and the cylinder $x^2 + y^2 = 1$ oriented counterclockwise when viewed from above.
 - (b) Graph both the hyperbolic paraboloid and the cylinder with domains chosen so that you can see the curve *C* and the surface that you used in part (a).
 - (c) Find parametric equations for *C* and use them to graph *C*.
 - 14 Verify that Stokes' Theorem is true for the vector field $\mathbf{F}(x, y, z) = -2yz\mathbf{i} + y\mathbf{j} + 3x\mathbf{k}$ and the surface *S*, the part of the paraboloid $z = 5 x^2 y^2$ that lies above the plane z = 1, oriented upward.
 - 16 Let *C* be a simple closed smooth curve that lies in the plane x + y + z = 1. Show that the line integral

$$\int_C z\,\mathrm{d}x - 2x\,\mathrm{d}y + 3y\,\mathrm{d}z$$

depends only on the area of the region enclosed by *C* and not on the shape of *C* or its location in the plane.

18 Evaluate

$$\int_C (y+\sin x) \, \mathrm{d}x + (z^2+\cos y) \, \mathrm{d}y + x^3 \, \mathrm{d}z$$

where *C* is the curve $\mathbf{r}(t) = \sin t \mathbf{i} + \cos t \mathbf{j} + \sin 2t \mathbf{k}$ for $0 \le t \le 2\pi$. (*Hint:* Observe that *C* lies on the surface z = 2xy.)

19 If *S* is a sphere and **F** satisfies the hypotheses of Stokes' Theorem, show that $\iint_S \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = 0$ (*Intuitively this is obvious but a full proof requires some upper-division level analysis - beware...*)

16.9 The Divergence Theorem

- 2, 4 Verify that the Divergence Theorem is true for the vector field F on the region E
 - 2 $\mathbf{F}(x, y, z) = x^2 \mathbf{i} + xy \mathbf{j} + z \mathbf{k}$ where *E* is the solid bounded by the paraboloid $z = 4 x^2 y^2$ and the *xy*-plane.
 - 4 $\mathbf{F}(x, y, z) = x^2 \mathbf{i} y \mathbf{j} + z \mathbf{k}$ where *E* is the solid cylinder $y^2 + z^2 \le 9$ for $0 \le x \le 2$
- 6–14 Use the Divergence Theorem to calculate the surface integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$; that is, calculate the flux of **F** across *S*.
 - 6 $\mathbf{F}(x, y, z) = x^2 y z \mathbf{i} + x y^2 z \mathbf{j} + x y z^2 \mathbf{k}$. *S* is the surface of the box enclosed by the planes x = 0, a, y = 0, b, and z = 0, c, where *a*, *b*, *c* are positive numbers.
 - 8 $\mathbf{F}(x,y,z) = (x^3 + y^3)\mathbf{i} + (y^3 + z^3)\mathbf{j} + (z^3 + x^3)\mathbf{k}$. *S* is the sphere of radius 2 centered at the origin.
 - 10 $\mathbf{F}(x, y, z) = z\mathbf{i} + y\mathbf{j} + zx\mathbf{k}$. *S* is the surface of the tetrahedron enclosed by the co-ordinate planes and the plane

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

where *a*, *b*, *c* are positive numbers.

- 12 $\mathbf{F}(x, y, z) = x^4 \mathbf{i} x^3 z^2 \mathbf{j} + 4xy^2 z \mathbf{k}$. *S* is the surface of the solid bounded by the cylinder $x^2 + y^2 = 1$ and the planes z = x + 2 and z = 0.
- 14 $\mathbf{F} = |\mathbf{r}|^2 \mathbf{r} = r^2 \mathbf{r}$ where $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, and *S* is the sphere of radius *R* centered at the origin
- 18 Let $\mathbf{F}(x, y, z) = z \tan^{-1}(y^2)\mathbf{i} + z^3 \ln(x^2 + 1)\mathbf{j} + z\mathbf{k}$. Find the flux of **F** across the part of the paraboloid $x^2 + y^2 + z = 2$ that lies above the plane z = 1 and is oriented upward.
- 20 (a) Are the points P_1 and P_2 sources or sinks for the vector field **F** shown in the picture? Give an explanation based solely on the figure.
 - (b) Given that $\mathbf{F} = x\mathbf{i} + y^2\mathbf{j}$, use the definition of divergence to verify your answer to part (a).

X	Y	ł	ł	¥	ŧ	1	1	1	1
×	X	۱,	5 N 1	ŧ	ŧ	1	1	1	1
•	•	1	۱ ۱	ł	+	1	1	*	*
•	•	•	•	•			-	-	*
+	+	•	-			-	-	+	-
-	+	+	-	·		-	÷	+	-
-2	•	•	•	•					_2
•	•	N	2	۲ ۸	+	1	1	*	X
X	×	X	• •	ŧ	ŧ	1	1	1	1
X	×		ł	ł	ŧ	1	1	1	1

24 Use the Divergence Theorem to evaluate

$$\iint_{S} 2x + 2y + z^2 \, \mathrm{d}S$$

where *S* is the sphere $x^2 + y^2 + z^2 = 1$

28 Supposing that *S*, *E* satisfy the conditions of the Divergence Theorem and that *f* has continuous partial derivatives, prove that

$$\iint_{S} D_{\mathbf{n}} f \, \mathrm{d}S = \iiint_{E} \nabla^{2} f \, \mathrm{d}V$$

(Here $D_{\mathbf{n}}f = \nabla f \cdot \mathbf{n}$ is the *directional derivative* of *f*)

31 Suppose *S* and *E* satisfy the conditions of the Divergence Theorem and f is a scalar function with continuous partial derivatives. Prove that

$$\iint_{S} f \mathbf{n} \, \mathrm{d}S = \iiint_{E} \nabla f \, \mathrm{d}V$$

Here each integral is computed as by integrating each component function of the vectors. (Hint: start by applying the Divergence Theorem to $\mathbf{F} = f\mathbf{i}...$).

32 A solid occupies a region *E* with surface *S* and is immersed in a liquid with constant density ρ . Set up a co-ordinate system so that the *xy*-plane is the surface of the liquid and positive values of *z* measure depth downward into the liquid. Then the pressure at depth *z* is $p = \rho g z$, where *g* is the acceleration due to gravity. The total bouyant force on the solid due to the pressure distribution is given by the surface integral

$$\mathbf{F} = -\iint_S p\mathbf{n} \, \mathrm{d}S$$

where **n** is the outer unit normal. Use the result of Exercise 31 to show that $\mathbf{F} = -W\mathbf{k}$ where *W* is the weight of the liquid displaced by the solid. This is *Archimedes' Principle*: the bouyancy force equals the weight of the displaced liquid.