Math 2E Multi-Variable Calculus Homework Questions 4

16.7 Surface Integrals

6-18 Evaluate the surface integral
$6 \iint_{S} x y z \mathrm{~d} S$ where S is the cone with parametric equations

$$
x=u \cos v, \quad y=u \sin v, \quad z=u, \quad 0 \leq u \leq 1, \quad 0 \leq v \leq \pi / 2
$$

$10 \iint_{S} x z \mathrm{~d} S$ where S is the part of the plane $2 x+2 y+z=4$ that lies in the first octant.
$12 \iint_{S} y \mathrm{~d} S$ where S is the surface $z=\frac{2}{3}\left(x^{3 / 2}+y^{3 / 2}\right), 0 \leq x, y \leq 1$.
$18 \iint_{S} x z \mathrm{~d} S$ where S is the boundary of the region enclosed by the cylinder $y^{2}+z^{2}=9$ and the planes $x=0$ and $x+y=5$.

22-32 Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}$ for the given vector field \mathbf{F} and oriented surface S. In other words, find the flux of \mathbf{F} across S. For closed surfaces use the positive (outward) orientation
$22 \mathbf{F}(x, y, z)=z \mathbf{i}+y \mathbf{j}+x \mathbf{k}, S$ is the helicoid with vector equation

$$
\mathbf{r}(u, v)=u \cos v \mathbf{i}+u \sin v \mathbf{j}+v \mathbf{k}, \quad 0 \leq u \leq 1, \quad 0 \leq v \leq \pi
$$

with upward orientation.
$26 \mathbf{F}(x, y, z)=x z \mathbf{i}+x \mathbf{j}+y \mathbf{k}, S$ is the hemisphere $x^{2}+y^{2}+z^{2}=25, y \geq 0$, oriented in the direction of the positive y-axis.
$28 \mathbf{F}(x, y, z)=x y \mathbf{i}+4 x^{2} \mathbf{j}+y z \mathbf{k}, S$ is the surface $z=x e^{y}, 0 \leq x, y \leq 1$, with upward orientation.
$32 \mathbf{F}(x, y, z)=y \mathbf{i}+(z-y) \mathbf{j}+x \mathbf{k}, S$ is the surface of the tetrahedron with vertices $(0,0,0),(1,0,0)$, $(0,1,0)$, and $(0,0,1)$.

40 Find the mass of a thin funnel in the shape of a cone $z=\sqrt{x^{2}+y^{2}}$ for $1 \leq z \leq 4$, if its density function is $\rho(x, y, z)=10-z$.
44 Seawater has density $1025 \mathrm{~kg} / \mathrm{m}^{3}$ and flows in a velocity field $\mathbf{v}=y \mathbf{i}+x \mathbf{j}$ where x, y, z are measured in meters and the components of \mathbf{v} in meters per second. Find the rate of flow outward through the hemisphere $x^{2}+y^{2}+z^{2}=9, z \geq 0$.

46 The temperature at a point in a ball with conductivity k is inversely proportional to the distance from the center of the ball. Find the rate of heat flow across a a sphere S of radius a with center at the center of the ball.

16.8 Stokes' Theorem

2-6 Use Stokes' Theorem to evaluate \iint_{S} curl F • dS
$2 \mathbf{F}(x, y, z)=2 y \cos z \mathbf{i}+e^{x} \sin z \mathbf{j}+x e^{y} \mathbf{k}$ where S is the hemisphere $x^{2}+y^{2}+z^{2}=9$ with $z \geq 0$, oriented upward
$4 \mathbf{F}(x, y, z)=\tan ^{-1}\left(x^{2} y z^{2}\right) \mathbf{i}+x^{2} y \mathbf{j}+x^{2} z^{2} \mathbf{k}$ where S is the cone $x=\sqrt{y^{2}+z^{2}}$ with $0 \leq x \leq 2$, oriented in the direction of the positive x-axis
$6 \mathbf{F}(x, y, z)=e^{x y} \mathbf{i}+e^{x z} \mathbf{j}+x^{2} z \mathbf{k}$ where S is the half of the ellipsoid $4 x^{2}+y^{2}+4 z^{2}=4$ to the right of the $x z$-plane, oriented in the direction of the positive y-axis

8, 10 Use Stokes' Theorem to evaluate $\int_{C} \mathbf{F} \cdot \mathrm{dr}$. In both cases C is oriented counterclockwise when viewed from above.
$8 \mathbf{F}(x, y, z)=\mathbf{i}+(x+y z) \mathbf{j}+(x y-\sqrt{z}) \mathbf{k}$ where C is the boundary of the part of the plane $3 x+$ $2 y+z=1$ in the first octant
$10 \mathbf{F}(x, y, z)=x y \mathbf{i}+2 z \mathbf{j}+3 y \mathbf{k}$ where C is the curve of intersection of the plane $x+z=5$ and the cylinder $x^{2}+y^{2}=9$
12 (a) Use Stokes' Theorem to evaluate $\int_{C} \mathbf{F} \cdot$ dr where $\mathbf{F}(x, y, z)=x^{2} y \mathbf{i}+\frac{1}{3} x^{3} \mathbf{j}+x y \mathbf{k}$ and C is the curve of intersection of the hyperbolic paraboloid $z=y^{2}-x^{2}$ and the cylinder $x^{2}+y^{2}=1$ oriented counterclockwise when viewed from above.
(b) Graph both the hyperbolic paraboloid and the cylinder with domains chosen so that you can see the curve C and the surface that you used in part (a).
(c) Find parametric equations for C and use them to graph C.

14 Verify that Stokes' Theorem is true for the vector field $\mathbf{F}(x, y, z)=-2 y z \mathbf{i}+y \mathbf{j}+3 x \mathbf{k}$ and the surface S, the part of the paraboloid $z=5-x^{2}-y^{2}$ that lies above the plane $z=1$, oriented upward.

16 Let C be a simple closed smooth curve that lies in the plane $x+y+z=1$. Show that the line integral

$$
\int_{C} z \mathrm{~d} x-2 x \mathrm{~d} y+3 y \mathrm{~d} z
$$

depends only on the area of the region enclosed by C and not on the shape of C or its location in the plane.

18 Evaluate

$$
\int_{C}(y+\sin x) \mathrm{d} x+\left(z^{2}+\cos y\right) \mathrm{d} y+x^{3} \mathrm{~d} z
$$

where C is the curve $\mathbf{r}(t)=\sin t \mathbf{i}+\cos t \mathbf{j}+\sin 2 t \mathbf{k}$ for $0 \leq t \leq 2 \pi$. (Hint: Observe that C lies on the surface $z=2 x y$.)

19 If S is a sphere and \mathbf{F} satisfies the hypotheses of Stokes' Theorem, show that $\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}=0$ (Intuitively this is obvious but a full proof requires some upper-division level analysis - beware...)

16.9 The Divergence Theorem

2,4 Verify that the Divergence Theorem is true for the vector field \mathbf{F} on the region E
$2 \mathbf{F}(x, y, z)=x^{2} \mathbf{i}+x y \mathbf{j}+z \mathbf{k}$ where E is the solid bounded by the paraboloid $z=4-x^{2}-y^{2}$ and the $x y$-plane.
$4 \mathbf{F}(x, y, z)=x^{2} \mathbf{i}-y \mathbf{j}+z \mathbf{k}$ where E is the solid cylinder $y^{2}+z^{2} \leq 9$ for $0 \leq x \leq 2$
6-14 Use the Divergence Theorem to calculate the surface integral $\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}$; that is, calculate the flux of \mathbf{F} across S.
$6 \mathbf{F}(x, y, z)=x^{2} y z \mathbf{i}+x y^{2} z \mathbf{j}+x y z^{2} \mathbf{k} . S$ is the surface of the box enclosed by the planes $x=0, a$, $y=0, b$, and $z=0, c$, where a, b, c are positive numbers.
$8 \mathbf{F}(x, y, z)=\left(x^{3}+y^{3}\right) \mathbf{i}+\left(y^{3}+z^{3}\right) \mathbf{j}+\left(z^{3}+x^{3}\right) \mathbf{k}$. S is the sphere of radius 2 centered at the origin.
$10 \mathbf{F}(x, y, z)=z \mathbf{i}+y \mathbf{j}+z x \mathbf{k} . S$ is the surface of the tetrahedron enclosed by the co-ordinate planes and the plane

$$
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1
$$

where a, b, c are positive numbers.
$12 \mathbf{F}(x, y, z)=x^{4} \mathbf{i}-x^{3} z^{2} \mathbf{j}+4 x y^{2} z \mathbf{k}$. S is the surface of the solid bounded by the cylinder $x^{2}+y^{2}=$ 1 and the planes $z=x+2$ and $z=0$.
$14 \mathbf{F}=|\mathbf{r}|^{2} \mathbf{r}=r^{2} \mathbf{r}$ where $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$, and S is the sphere of radius R centered at the origin
18 Let $\mathbf{F}(x, y, z)=z \tan ^{-1}\left(y^{2}\right) \mathbf{i}+z^{3} \ln \left(x^{2}+1\right) \mathbf{j}+z \mathbf{k}$. Find the flux of \mathbf{F} across the the part of the paraboloid $x^{2}+y^{2}+z=2$ that lies above the plane $z=1$ and is oriented upward.
20 (a) Are the points P_{1} and P_{2} sources or sinks for the vector field \mathbf{F} shown in the picture? Give an explanation based solely on the figure.
(b) Given that $\mathbf{F}=x \mathbf{i}+y^{2} \mathbf{j}$, use the definition of divergence to verify your answer to part (a).

24 Use the Divergence Theorem to evaluate

$$
\iint_{S} 2 x+2 y+z^{2} \mathrm{~d} S
$$

where S is the sphere $x^{2}+y^{2}+z^{2}=1$

28 Supposing that S, E satisfy the conditions of the Divergence Theorem and that f has continuous partial derivatives, prove that

$$
\iint_{S} D_{\mathbf{n}} f \mathrm{~d} S=\iiint_{E} \nabla^{2} f \mathrm{~d} V
$$

(Here $D_{\mathbf{n}} f=\nabla f \cdot \mathbf{n}$ is the directional derivative of f)
31 Suppose S and E satisfy the conditions of the Divergence Theorem and f is a scalar function with continuous partial derivatives. Prove that

$$
\iint_{S} f \mathbf{n} \mathrm{~d} S=\iiint_{E} \nabla f \mathrm{~d} V
$$

Here each integral is computed as by integrating each component function of the vectors. (Hint: start by applying the Divergence Theorem to $\mathbf{F}=f \mathbf{i} .$. .).

32 A solid occupies a region E with surface S and is immersed in a liquid with constant density ρ. Set up a co-ordinate system so that the $x y$-plane is the surface of the liquid and positive values of z measure depth downward into the liquid. Then the pressure at depth z is $p=\rho g z$, where g is the acceleration due to gravity. The total bouyant force on the solid due to the pressure distribution is given by the surface integral

$$
\mathbf{F}=-\iint_{S} p \mathbf{n} \mathrm{~d} S
$$

where \mathbf{n} is the outer unit normal. Use the result of Exercise 31 to show that $\mathbf{F}=-W \mathbf{k}$ where W is the weight of the liquid displaced by the solid. This is Archimedes' Principle: the bouyancy force equals the weight of the displaced liquid.

