Math 2E: Pre-req Quiz

1. Evaluate the integrals:
(a) $\int(6 x+1) \sqrt{3 x^{2}+x} \mathrm{~d} x$.
(b) $\int_{0}^{\pi / 4} \frac{\sin x}{\cos x} \mathrm{~d} x$.
(c) $\int \frac{2}{x^{2}-4 x-32} \mathrm{~d} x$.
(d) $\int_{1}^{e^{2}} t^{2} \ln t \mathrm{~d} t$.
2. The arc-length of a curve $y=f(x)$ between $x=a$ and $x=b$ is given by $\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} \mathrm{~d} x$. Compute the arc-length of $y=x^{3 / 2}$ for $0 \leq x \leq 4$.
3. Find the unit tangent vector to the curve $\mathbf{v}(t)=\left(\begin{array}{c}t^{2} \\ 4 t \\ 4 \ln t\end{array}\right)$ at $t=3$.
4. Identify each equation with one of the following surfaces: plane, cone, cylinder, paraboloid, ellipsoid, hyperboloid of one sheet, hyperboloid of two sheets. Each type of surface appears exactly once.
(a) $x^{2}+y^{2}=7$.
(b) $x^{2}+y^{2}=z$.
(c) $x^{2}+\frac{y^{2}}{4}+\frac{z^{2}}{9}=1$.
(d) $2 x+7 y-3 z=2$.
(e) $3 x^{2}+7 y^{2}=z^{2}$.
(f) $\frac{x^{2}}{16}+\frac{y^{2}}{4}-\frac{z^{2}}{9}=1$.
(g) $\frac{x^{2}}{16}-\frac{y^{2}}{4}-\frac{z^{2}}{9}=1$.

You should be able to do this by vizualizing the cross-sections (level-curves) of each surface with respect to each of the co-ordinate planes.
5. Find the gradient of the function $f(x, y)=x^{4}+y^{4}-4 x-32 y+10$. Find its unique critical point, and use the Second Derivative Test to decide whether the critical point is a local minimum, local maximum, or a saddle point.

