Math 3A: Homework 1

Submit these questions at the discussion on Thursday 6th October

1. For each of the following systems of equations:

- Identify the system as square, underdetermined or overdetermined.
- Write the system in augmented matrix format and find a row echelon form.
- Identify the lead and free variables.
- Decide whether the system is consistent and, if so, find all of its solutions.
(a) $\begin{cases}x_{1}+2 x_{2} & =4 \\ -2 x_{1}-2 x_{2} & =4\end{cases}$
(b) $\begin{cases}x_{1}+x_{2}+x_{3}+x_{4} & =1 \\ 2 x_{2}+x_{3}-2 x_{4} & =1 \\ 4 x_{3}+x_{4} & =-2 \\ x_{4} & =-3\end{cases}$
(c) $\begin{cases}5 x_{1}-2 x_{2}+x_{3} & =3 \\ 2 x_{1}+3 x_{2}-4 x_{3} & =0\end{cases}$
(d) $\begin{cases}3 x_{1}+2 x_{2} & =8 \\ x_{1}+5 x_{2} & =7 \\ x_{1}-8 x_{2} & =-6\end{cases}$
(e) $\begin{cases}x_{1}-3 x_{2}+x_{3} & =1 \\ 2 x_{1}+x_{2}-x_{3} & =2 \\ x_{1}+4 x_{2}-2 x_{3} & =1 \\ 5 x_{1}-8 x_{2}+2 x_{3} & =6\end{cases}$
(f) $\left\{\begin{array}{l}x_{1}+x_{2}+x_{3}=0 \\ x_{1}-x_{2}-x_{3}=0\end{array}\right.$

2. Consider the system with augmented matrix

$$
\left(\begin{array}{lll|l}
1 & 1 & 3 & 2 \\
0 & 1 & 1 & 1 \\
1 & 3 & a & b
\end{array}\right)
$$

where a and b are constants.
(a) Find a row echelon form of this system.
(b) Find conditions on a and b such that:
i. The system has a unique solution.
ii. The system is inconsistent.
iii. The system has infinitely many solutions.
3. Consider the system of equations

$$
\left\{\begin{array}{l}
a x-y=p \\
b x-y=q
\end{array}\right.
$$

where a, b, p, q are constants. Geometrically, each equation represents a straight line in the x, y plane.
(a) What facts about these lines do the values a, b, p, q represent?
(b) Find conditions on a, b, p, q such that:
i. The system has a unique solution.
ii. The system is inconsistent.
iii. The system has infinitely many solutions.

What do these conditions mean geometrically? Hint: you may find it easier to treat $y=x_{1}$ and $x=x_{2} \ldots$
4. Consider the vectors

$$
\mathbf{a}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad \mathbf{a}_{2}=\left(\begin{array}{c}
4 \\
-2 \\
3
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
6 \\
0 \\
2
\end{array}\right)
$$

Does the vector equation $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}=\mathbf{b}$ have a solution?
5. Consider the vectors

$$
\mathbf{a}=\left(\begin{array}{c}
2 a \\
a \\
1
\end{array}\right), \quad \mathbf{v}_{1}=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right)
$$

where a is a constant. Does there exist a value of a such that the vector a lies in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$? Illustrate your answer by making a sketch of the following:

- $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$
- All of the points in \mathbb{R}^{3} whose position vectors are a for some value of a.

6. Suppose that $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ are the columns of a 5×3 matrix A. Suppose also that \mathbf{b} is a vector satisfying the equations

$$
\mathbf{b}=\mathbf{a}_{1}+\mathbf{a}_{2} \quad \text { and } \quad \mathbf{b}=\mathbf{a}_{1}-\mathbf{a}_{2}+3 \mathbf{a}_{3}
$$

Prove that the vector equation $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions.
7. Find a non-trivial linear combination of the vectors

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{l}
3 \\
1 \\
4
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{l}
0 \\
1 \\
7
\end{array}\right), \quad \mathbf{v}_{4}=\left(\begin{array}{l}
5 \\
0 \\
3
\end{array}\right)
$$

such that $x_{1} \mathbf{v}_{1}+\cdots+x_{4} \mathbf{v}_{4}=\mathbf{0}$. That is, at least some of the x_{i} must be non-zero.

