Math 3A: Homework 2

Submit these questions at the discussion on Thursday 13th October

1. Write the solutions to the following systems in parametric vector form: that is, find a vector \mathbf{p} and (possibly) vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ such that

$$
A \mathbf{x}=\mathbf{b} \Longleftrightarrow \mathbf{x}=\mathbf{p}+c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k}
$$

for any constants c_{1}, \ldots, c_{k}.
(a) $\begin{cases}x_{1}-3 x_{2} & =-5 \\ -2 x_{1}+6 x_{2} & =10\end{cases}$
(b) $\begin{cases}x_{1}+3 x_{2}+x_{3} & =6 \\ 2 x_{1}+x_{2} & =5 \\ 3 x_{1}+4 x_{2}+x_{3} & =11 \\ 5 x_{2}+2 x_{3} & =7\end{cases}$
(c) $\begin{cases}2 x_{1}+x_{2}-x_{3}+x_{4} & =4 \\ 3 x_{1}+9 x_{2}-3 x_{5} & =9\end{cases}$
2. Is the following collection of vectors in \mathbb{R}^{4} linearly independent? Justify your answer.

$$
\left(\begin{array}{l}
1 \\
3 \\
6 \\
5
\end{array}\right), \quad\left(\begin{array}{c}
-1 \\
0 \\
0 \\
3
\end{array}\right), \quad\left(\begin{array}{l}
2 \\
1 \\
1 \\
1
\end{array}\right), \quad\left(\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right)
$$

3. Suppose that

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
1 \\
2 \\
0 \\
2
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{l}
0 \\
0 \\
3 \\
1
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
6
\end{array}\right)
$$

Find a vector $\mathbf{v}_{4} \in \mathbb{R}^{4}$ such that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is linearly independent. Justify your answer.
4. Find a 2×3 matrix A such that $\left(\begin{array}{l}1 \\ 3 \\ 9\end{array}\right)$ is a solution to $A \mathbf{x}=\binom{1}{2}$.
5. Suppose that the solution set of a system of linear equations can be described as

$$
x_{1}=2+3 x_{2}, \quad x_{3}=1-4 x_{2}
$$

where x_{2} is free. Use vectors to describe this as a line in \mathbb{R}^{3}.
6. Balance the following chemical reaction using linear algebra:

$$
\mathrm{MnS}+\mathrm{As}_{2} \mathrm{Cr}_{10} \mathrm{O}_{35}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{HMnO}_{4}+\mathrm{AsH}_{3}+\mathrm{CrS}_{3} \mathrm{O}_{12}+\mathrm{H}_{2} \mathrm{O}
$$

by considering the numbers (or moles) of atoms of Manganese, Sulphur, Arsenic, Chromium, Oxygen and Hydrogen on each side of the reaction.
7. Prove the following: if \mathbf{p} is a solution to the matrix equation $A \mathbf{x}=\mathbf{b}$, then every other solution has the form $\mathbf{y}=\mathbf{p}+\mathbf{n}$, where $A \mathbf{n}=\mathbf{0}$.
Hint: Suppose that \mathbf{w} is another solution to $A \mathbf{x}=\mathbf{b}$. What can you say about the vector $\mathbf{w}-\mathbf{p}$?
8. Suppose that \mathbf{v} and \mathbf{w} are two non-parallel vectors in \mathbb{R}^{3}. Prove that there exists a vector $\mathbf{z} \in \mathbb{R}^{3}$ such that $\{\mathbf{v}, \mathbf{w}, \mathbf{z}\}$ is a linearly independent set.

