Math 3A: Homework 3

Submit these questions at the discussion on Thursday 3rd November

1. Show, using the definition of subspace, that

$$
U=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right),\left(\begin{array}{c}
-1 \\
3 \\
1
\end{array}\right)\right\}
$$

is a subspace of \mathbb{R}^{3}.
2. Find bases for each the column and null spaces of the following matrices. Also state the rank and nullity, and check that the rank-nullity theorem holds.
(a) $\left(\begin{array}{llll}1 & 3 & 4 & 2 \\ 0 & 1 & 1 & 0\end{array}\right)$
(b) $\left(\begin{array}{lll}2 & 3 & 1 \\ 1 & 1 & 0 \\ 0 & 2 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}1 & 1 & 2 \\ 0 & 3 & 1 \\ -1 & 2 & 2 \\ 0 & 1 & 1\end{array}\right)$
(d) $\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ -2 & 0 & 1 & 2 \\ -1 & 1 & 2 & 3 \\ 2 & 4 & 5 & 6\end{array}\right)$
3. Find a basis for the subspace of \mathbb{R}^{4} spanned by the following vectors

$$
\left(\begin{array}{c}
1 \\
-1 \\
-2 \\
5
\end{array}\right),\left(\begin{array}{c}
2 \\
-3 \\
-1 \\
6
\end{array}\right),\left(\begin{array}{c}
0 \\
2 \\
-6 \\
8
\end{array}\right),\left(\begin{array}{c}
-1 \\
4 \\
-7 \\
7
\end{array}\right),\left(\begin{array}{c}
3 \\
-8 \\
9 \\
-5
\end{array}\right)
$$

What is the dimension of the subspace?
4. Suppose that A is a 6×5 matrix whose null space is not $\{\mathbf{0}\}$. What can you say about the rank of A ?
5. (a) Prove that $\mathcal{B}=\left\{\binom{2}{1},\binom{3}{1}\right\}$ is a basis of \mathbb{R}^{2}.
(b) Find the co-ordinates of the vector $\mathbf{x}=\binom{7}{2}$ with respect to the basis \mathcal{B}.

Note: If $\mathcal{E}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}=\left\{\binom{1}{0},\binom{0}{1}\right\}$ is the standard basis of \mathbb{R}^{2}, then the co-ordinates of \mathbf{x} with respect to \mathcal{E} is \mathbf{x} itself: that is $[\mathbf{x}]_{\mathcal{E}}=\mathbf{x}$. We want to compute $[\mathbf{x}]_{\mathcal{B}}$.
6. Find the co-ordinates of $\mathbf{x}=\left(\begin{array}{c}8 \\ -9 \\ 4\end{array}\right)$ with respect to the basis

$$
\mathcal{B}=\left\{\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{c}
3 \\
-4 \\
1
\end{array}\right)\right\}
$$

of $\operatorname{Span} \mathcal{B}$.
7. Suppose that U and V are both subspaces of \mathbb{R}^{n}. We define the following sets:

- The union $U \cup V=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{x} \in U\right.$ or $\left.\mathbf{x} \in V\right\}$ is the set of all vectors in either U, V or both.
- The sum $U+V=\left\{\mathbf{u}+\mathbf{v} \in \mathbb{R}^{n}: \mathbf{u} \in U\right.$ and $\left.\mathbf{v} \in V\right\}$ is the set of all vectors which can be written as a sum of vectors in U and V.
- The intersection $U \cap V=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{x} \in U\right.$ and $\left.\mathbf{x} \in V\right\}$ is the set of all vectors in both U and V.
(a) Let $U=\operatorname{Span}\left\{\mathbf{e}_{1}\right\}$ and $V=\operatorname{Span}\left\{\mathbf{e}_{2}\right\}$ be subspaces of \mathbb{R}^{2}. Describe the union, sum and intersection of the subspaces U and V. Of the three, which are subspaces of \mathbb{R}^{2} in their own right?
(b) Let $U=\operatorname{Span}\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ and $V=\operatorname{Span}\left\{\mathbf{e}_{1}, \mathbf{e}_{3}\right\}$ be subspaces of \mathbb{R}^{3}. Repeat part (a) for these subspaces.
(c) Prove that, in general, the sum and intersection of two subspaces of \mathbb{R}^{n} are themselves subspaces of \mathbb{R}^{n}.
(Hopefully parts (a) and (b) have convinced you that the union of two subspaces is not generally a subspace!)

