Math 3A: Homework 4

Submit these questions at the discussion on Tuesday 15th November

1. Use whichever method you like to compute the following determinant:

$$
\operatorname{det}\left(\begin{array}{ccccc}
2 & 1 & 4 & -2 & 0 \\
0 & 1 & -1 & -2 & 0 \\
4 & -2 & 0 & 4 & 0 \\
0 & -4 & 0 & 8 & 3 \\
1 & 1 & 3 & 1 & 2
\end{array}\right)
$$

2. Suppose that A, B, E are 3×3 matrices such that $\operatorname{det} A=4$, $\operatorname{det} B=6$ and where E is the elementary matrix swapping rows 1 and 2 . Compute the following:
(a) $\operatorname{det}\left(\frac{1}{2} A\right)$
(b) $\operatorname{det}\left(B^{-1} A^{T}\right)$
(c) $\operatorname{det}\left(E A^{2}\right)$
3. Consider the matrix

$$
A=\left(\begin{array}{ccc}
7 & 2 & 3 \\
3 & -6 & 15 \\
1 & 1 & -1
\end{array}\right)
$$

Deduce the number of solutions to the system $A \mathbf{x}=\mathbf{0}$. Justify your answer.
4. Use Cramer's rule to find the given values in the solutions to the following linear systems $A \mathbf{x}=\mathbf{b}$:
(a) Find x_{1} if $\left(\begin{array}{ccc}1 & 3 & 4 \\ 2 & 1 & 0 \\ -1 & 2 & 1\end{array}\right) \mathbf{x}=\left(\begin{array}{c}-7 \\ 2 \\ 3\end{array}\right)$
(b) Find x_{2} if $\left(\begin{array}{ccc}1 & 3 & 4 \\ 2 & 1 & 0 \\ -1 & 2 & 1\end{array}\right) \mathbf{x}=\left(\begin{array}{c}32 \\ 7 \\ 13\end{array}\right)$
(c) Find x_{1} and x_{3} if $\left(\begin{array}{llll}0 & 2 & 1 & 4 \\ 0 & 0 & 1 & 1 \\ 3 & 2 & 1 & 1 \\ 1 & 1 & 2 & 3\end{array}\right) \mathbf{x}=\left(\begin{array}{l}2 \\ 2 \\ 2 \\ 4\end{array}\right)$
5. Suppose that

$$
A=\left(\begin{array}{ccc}
x & -1 & 1 \\
-1 & x & -1 \\
1 & 1 & x
\end{array}\right)
$$

where x is a real number.
(a) Compute $\operatorname{det} A$ as a function of x.
(b) For which values of x is A a singular matrix?
(c) (Challenge) Find the inverse of A whenever x is such that A is non-singular.
6. Suppose that A, B, C are square matrices, that $C=A B$, and that C is singular. Prove that A or B is singular.
7. Suppose that A is a square matrix and that $A \mathbf{x}=A \mathbf{y}$ for some vectors $\mathbf{x} \neq \mathbf{y}$. Prove that A is singular.
8. The adjoint matrix adj A of an $n \times n$ invertible matrix A satisfies the matrix equation

$$
A(\operatorname{adj} A)=(\operatorname{det} A) I
$$

(a) Prove that $\operatorname{det}(\operatorname{adj} A)=(\operatorname{det} A)^{n-1}$.
(b) Suppose that B is a 4×4 matrix whose adjoint has determinant -8 . What is the determinant of B ?

