Math 3A: Homework 6

Submit these questions at the discussion on Tuesday 29th November

1. Compute the matrix $[T]_{\mathcal{B}}^{\mathcal{C}}$ of the linear map $T: V \rightarrow W$ with respect to the bases \mathcal{B} and \mathcal{C}.
(a) Let $\mathcal{B}=\left\{1, x, x^{2}\right\}$ and $\mathcal{C}=\left\{1, x, x^{2}, x^{3}\right\}$ with $T: \mathbb{P}^{2} \rightarrow \mathbb{P}^{3}$ defined by

$$
T(p)(x)=\int_{0}^{x} p(t) \mathrm{d} t+p^{\prime}(x)
$$

(b) Let $\mathcal{B}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ and $\mathcal{C}=\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)\right\}$ with $T: \mathbb{R}^{3} \rightarrow$ Span \mathcal{C} defined by

$$
T(\mathbf{x})=\frac{1}{2}\left(x_{1}+x_{2}\right)\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+\frac{1}{3}\left(x_{1}-x_{2}+x_{3}\right)\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)
$$

2. Let $T=\frac{\mathrm{d}}{\mathrm{d} x}$ be the function $T: V \rightarrow V$ where

$$
V=\operatorname{Span}\left\{e^{2 x} \sin 3 x, e^{2 x} \cos 3 x\right\}
$$

(a) Prove that T is a linear map.
(b) Compute the matrix of T with respect to the basis

$$
\mathcal{B}=\left\{e^{2 x} \sin 3 x, e^{2 x} \cos 3 x\right\}
$$

(c) Use your matrix to compute the integral

$$
\int e^{2 x}(\sin 3 x+4 \cos 3 x) d x
$$

without using integration by parts.
3. Let $\mathcal{B}=\{2+3 x, 1-x\}$ be a basis of \mathbb{P}^{2}.
(a) Find the co-ordinates $[p]_{\mathcal{B}}$ of the vector $p(x)=4-5 x$ with respect to the basis \mathcal{B}. More generally, find the change of coördinate matrix $[I]_{\mathcal{E}}^{\mathcal{B}}$ from the standard basis to \mathcal{B}.
(b) Compute the matrix $[T]_{\mathcal{B}}=[I]_{\mathcal{E}}^{\mathcal{B}}[T]_{\mathcal{E}}[I]_{\mathcal{B}}^{\mathcal{E}}$ of the differentiation operator $T=\frac{\mathrm{d}}{\mathrm{d} x}$ with respect to the basis \mathcal{B}.
(c) Check explicitly that

$$
[T]_{\mathcal{B}}\binom{1}{0}=\binom{a}{b} \Longleftrightarrow \frac{\mathrm{~d}}{\mathrm{~d} x}(2+3 x)=a(2+3 x)+b(1-x)
$$

and

$$
[T]_{\mathcal{B}}\binom{0}{1}=\binom{c}{d} \Longleftrightarrow \frac{\mathrm{~d}}{\mathrm{~d} x}(1-x)=c(2+3 x)+d(1-x)
$$

4. Let $\mathbb{P}^{2}=\operatorname{Span}\left\{1, x, x^{2}\right\}$ and let $T: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ be defined by

$$
T(p)=p^{\prime \prime}+(1+x) p^{\prime}
$$

(a) With respect to the standard basis $\mathcal{E}=\left\{1, x, x^{2}\right\}$, compute the matrix of T.
(b) Find the eigenvalues and eigenvectors of $[T]_{\mathcal{E}}$, and hence diagonalize it.
(c) Find a basis \mathcal{B} of \mathbb{P}^{2} So that $T(p)=\lambda p$ for each $p \in \mathcal{B}$.
(d) Interpret your answer to part (c) in the following context: For which values of λ does the differential equation

$$
p^{\prime \prime}(x)+(1+x) p^{\prime}(x)=\lambda p(x)
$$

have a solution $p(x)=a+b x+c x^{2}$ which is a quadratic polynomial? For each such value of λ, find the solution.

