Math 3A: Extra Final Review Questions

1. Solve the following system of equations using any method you like.

$$
\left\{\begin{aligned}
x_{1}-x_{3}+x_{4} & =-4 \\
3 x_{1}-x_{3}+x_{4} & =-2 \\
x_{1}+2 x_{2}+x_{3}-x_{4} & =4 \\
x_{2}+2 x_{3} & =3
\end{aligned}\right.
$$

2. Compute the subspaces $\mathcal{N}(A), \mathcal{N}\left(A^{T}\right), \operatorname{col}(A), \operatorname{col}\left(A^{T}\right)$ for the following matrix, and check that the fundamental subspace theorem holds. Make a couple of skectches which illustrate the four subspaces and their relationship to one another.

$$
A=\left(\begin{array}{ll}
2 & 4 \\
1 & 2 \\
3 & 6
\end{array}\right)
$$

3. Suppose that A is non-singular. Prove that $A^{T} A$ is non-singular.
4. Prove that A is diagonalizable if and only if A^{T} is.
5. Let A be the matrix

$$
A=\left(\begin{array}{ccc}
0 & 0 & 0 \\
-5 & 7 & 2 \\
4 & -2 & 2
\end{array}\right)
$$

(a) Calculate the eigenvalues and eigenvectors of the matrix A.
(b) Find a diagonal matrix D and an invertible matrix X such that $A=X D X^{-1}$.
6. Let X be the matrix

$$
X=\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

(a) Use row operations on the augmented matrix $(X \mid I)$ to show that the inverse of X is

$$
X^{-1}=\frac{1}{2}\left(\begin{array}{ccc}
-1 & 1 & 1 \\
2 & 0 & -2 \\
1 & -1 & 1
\end{array}\right) .
$$

(b) The matrix A has the following eigenvalues and eigenvectors:

$$
\begin{aligned}
& \mathbf{v}_{1}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \text { with eigenvalue } \lambda_{1}=-2 \\
& \mathbf{v}_{2}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \text { and } \mathbf{v}_{3}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \text { with eigenvalue } \lambda_{2}=4
\end{aligned}
$$

Calculate A.
7. Apply the Gram-Schmidt orthogonalization process to compute an orthonormal basis of

$$
U=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
2 \\
1 \\
1 \\
1
\end{array}\right)\right\}
$$

Hence or otherwise, compute the orthogonal projection of the vector $\mathbf{v}=\left(\begin{array}{l}3 \\ 1 \\ 1 \\ 2\end{array}\right)$ onto U.
8. A square matrix is said to be orthogonal if $A^{T} A=I$ where I is the identity matrix. Prove that the determinant of an orthogonal matrix must be ± 1.
9. The vector space $\mathbb{P}^{2}=\operatorname{Span}\left\{1, x, x^{2}\right\}$ together with the function

$$
\langle p, q\rangle=\int_{0}^{1} p(x) q(x) \mathrm{d} x
$$

is an inner product space.
(a) Find all polynomials $p(x)=a+b x+c x^{2}$ which are orthogonal to the polynomial $q(x)=$ $1-x$: that is for which $\langle p, q\rangle=0$.
(b) The Gram-Schmidt process applies perfectly well in this inner product space. Apply it to the basis $\left\{1, x, x^{2}\right\}$ to obtain an orthogonal basis of \mathbb{P}^{2}.

