
1.2  Slope Fields: Examples and Euler’s Method

General approach If we cannot easily solve a 1st-order equation

d𝑦
d𝑥 = 𝑓 (𝑥, 𝑦)

we can at least sketch the slope field

v(𝑥, 𝑦) = ( 1
𝑓 (𝑥, 𝑦)) = i + 𝑓 (𝑥, 𝑦)j

and guess/fit solution curves tangent to the arrows.

For the examples, exact solutions require separation of variables or the integrating factor method 
(sections 1.3 or 1.4). In general, it is unlikely that exact closed-form solutions can be found.

1. d𝑦
d𝑥 = 𝑦 has solutions 𝑦 = 𝑐𝑒𝑥 where 𝑐 is any constant
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2. d𝑦
d𝑥 = 𝑦 − 𝑥 has solutions 𝑦 = 𝑐𝑒𝑥 + 𝑥 + 1

−2

−1

1

2

y

−2 −1 1 2
x

y = ex + x + 1

y = 0.5ex + x + 1

y = −0.3ex + x + 1

y = −0.7ex + x + 1

3. d𝑦
d𝑥 = 𝑥2 − 1

2𝑦 has solutions 𝑦 = 𝑐𝑒−𝑥/2 + 2𝑥2 − 8𝑥 + 16

−2

−1

1

2

y

−2 −1 1 2
x

y = −14e−x/2 + 2x2 − 8x + 16

y = −15ex + 2x2 − 8x + 16

y = −16ex + 2x2 − 8x + 16

y = −17ex + 2x2 − 8x + 16



Euler’s Method (non-examinable)

The slope field method is essentially how computers “solve” differential equations. Here is a very 
basic approach to finding an approximate solution to a 1st-order initial value problem

⎧{
⎨{⎩

d𝑦
d𝑥 = 𝑓 (𝑥, 𝑦)
𝑦(𝑎) = 𝑏

1. Apply Picard’s Theorem to argue that the IVP has a unique solution.

2. Choose a step size ℎ: a small positive number.

3. Place a dot at the point 𝑃0 ∶= (𝑎, 𝑏), the initial condition.

4. Move along the vector ℎ ( 1
𝑓 (𝑃0) ) and place a new point 𝑃1 ∶= 𝑃0 + ℎ(1, 𝑓 (𝑃0)).

5. Repeat for as many steps at you like.

6. Join the dots!

At each point 𝑃𝑗, the line segment 𝑃𝑗𝑃𝑗+1 is tangent to the slope field. The resulting piecewise curve 
approximates the solution to the original problem. For a more accurate approximation, increase the step 
size (and computing time).
The difficulties and challenges of Euler’s method (and its commonly used “Runge–Kutta” extensions) 
are a matter for a more advanced course.
The pictures below show the method applied to the ODE d𝑦

d𝑥 = 2 sin(𝑥𝑦) with initial condition 𝑦(−1) = 1
and decreasing step sizes: ℎ1 = 0.3, ℎ2 = 0.1, ℎ3 = 0.05 and ℎ4 = 0.025. It certainly appears that as one 
reduces the step size, the approximate solution seems to be approaching something…
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               d  𝑦     d  𝑥    =  𝑓  (  𝑥  ,  𝑦  )    


           v  (  𝑥  ,  𝑦  )  =    (              1        𝑓  (  𝑥  ,  𝑦  )          )   =  i  +  𝑓  (  𝑥  ,  𝑦  )  j    


       d  𝑦     d  𝑥    =  𝑦 


   𝑦  =  𝑐    𝑒  𝑥  


   𝑐 


       d  𝑦     d  𝑥    =  𝑦  −  𝑥 


   𝑦  =  𝑐    𝑒  𝑥   +  𝑥  +  1 


       d  𝑦     d  𝑥    =    𝑥  2   −    1  2   𝑦 


   𝑦  =  𝑐    𝑒    −  𝑥  /  2    +  2    𝑥  2   −  8  𝑥  +   16  


             {                d  𝑦     d  𝑥    =  𝑓  (  𝑥  ,  𝑦  )             𝑦  (  𝑎  )  =  𝑏                  


   ℎ 


     𝑃  0   ∶  =  (  𝑎  ,  𝑏  ) 


   ℎ      (          1           𝑓  (    𝑃  0   )      )  


     𝑃  1   ∶  =    𝑃  0   +  ℎ  (  1  ,  𝑓  (    𝑃  0   )  ) 


     𝑃  𝑗  


         𝑃  𝑗     𝑃    𝑗  +  1     ‾  


       d  𝑦     d  𝑥    =  2     sin   (  𝑥  𝑦  ) 


   𝑦  (  −  1  )  =  1 


     ℎ  1   =  0  .  3 


     ℎ  2   =  0  .  1 


     ℎ  3   =  0  .   05  


     ℎ  4   =  0  .   025  


\begin {equation*}\diff [y]{x}=f(x,y)\end {equation*}


\begin {equation*}\vv (x,y)=\twovec 1{f(x,y)} =\vi +f(x,y)\vj \end {equation*}


$\diff [y]{x}=y$


$y=ce^x$


$c$


$\diff [y]{x}=y-x$


$y=ce^x+x+1$


$\diff [y]{x}=x^2-\frac 12y$


$y=ce^{-x/2}+2x^2-8x+16$


\begin {equation*}\begin {cases} \diff [y]{x}=f(x,y)\\ y(a)=b \end {cases}\end {equation*}


$h$


$P_0:=(a,b)$


$h\stwovec 1{f(P_0)}$


$P_1:=P_0+h\big (1,f(P_0)\big )$


$P_j$


$\cl {P_jP_{j+1}}$


$\diff [y]{x}=2\sin (xy)$


$y(-1)=1$


$\textcolor {blue}{h_1=0.3}$


$\textcolor {Green}{h_2=0.1}$


$\textcolor {Orange}{h_3=0.05}$


$\textcolor {Brown}{h_4=0.025}$



