
Forced Oscillations and Resonance (Section 2.6)

Consider the spring (oscillator) equation with external force 𝐹(𝑡). A basic case assumes 𝐹 periodic,

𝑚𝑥″ + 𝑐𝑥′ + 𝑘𝑥 = 𝐹0 cos 𝜔𝑡

Many real-life situations can be modeled this way, for example buildings in an earthquake, where the 
ground shakes periodically. In the abstract, there are two generic cases.

Case 1: Undamped, Driven Motion

The equation is 𝑚𝑥″ + 𝑘𝑥 = 𝐹0 cos 𝜔𝑡 (no friction 𝑐 = 0). In the absence of an external force, the spring 
oscillates with circular frequency 𝜔0 = √ 𝑘

𝑚 : this provides the complementary function

𝑥𝐶(𝑡) = 𝑐1 cos 𝜔0𝑡 + 𝑐2 sin 𝜔0𝑡

It remains to find a suitable particular integral 𝑥𝑃(𝑡). For this there are two sub-cases.

Case 1(a): Beating (𝜔 ≠ 𝜔0) The most likely possibility is that the frequency of the external force 
𝐹0 cos 𝜔𝑡 differs from the natural frequency of the spring. We try a particular integral of the form

𝑥𝑃(𝑡) = 𝑎 cos 𝜔𝑡 + 𝑏 sin 𝜔𝑡

Substituting into the differential equation, we see that

𝑚𝑥″
𝑃 + 𝑘𝑥𝑃 = (−𝑚𝑎𝜔2 + 𝑘𝑎) cos 𝜔𝑡 + (−𝑚𝑏𝜔2 + 𝑘𝑏) sin 𝜔𝑡 = 𝐹0 cos 𝜔𝑡

⟹ 𝑎 =
𝐹0

𝑘 − 𝑚𝜔2 =
𝐹0

𝑚(𝜔2
0 − 𝜔2)

, 𝑏 = 0

from which the general solution is

𝑥(𝑡) = 𝑥𝑃(𝑡) + 𝑥𝐶(𝑡) =
𝐹0

𝑚(𝜔2
0 − 𝜔2)

cos 𝜔𝑡 + 𝑐1 cos 𝜔0𝑡 + 𝑐2 sin 𝜔0𝑡

The result is a combination of two periodic motions with different frequencies. Larger 𝐹0 and having 𝜔
close to 𝜔0 produce more motion. For simplicity, suppose our initial conditions are 𝑥(0) = 0 = 𝑥′(0)
(spring starts at rest). A little algebra and a trigonometric identity yield

𝑥(𝑡) =
𝐹0

𝑚(𝜔2
0 − 𝜔2)

(cos 𝜔𝑡 − cos 𝜔0𝑡) =
2𝐹0

𝑚(𝜔2
0 − 𝜔2)

sin
𝜔0 − 𝜔

2 𝑡 sin
𝜔0 + 𝜔

2 𝑡

If 𝜔0, 𝜔 are close in value, then 𝜔0 − 𝜔 ≪ 𝜔0 + 𝜔, and we have a high-frequency (𝜔0+𝜔
4𝜋  Hz) oscillation 

whose amplitude varies at a lower frequency ( ∣𝜔0−𝜔∣
4𝜋  Hz). This phenomenon is known as beating: a 

sound wave like this changes in volume.

Example  A spring with 𝑥″ + 400𝑥 = 38 cos 18𝑡 has 
natural frequency 𝜔0 = √400 = 20 rad/s and driving 
frequency 𝜔 = 18 rad/s.
The solution with initial conditions 𝑥(0) = 0 = 𝑥′(0)
is 𝑥(𝑡) = sin 𝑡 sin 19𝑡 = 𝐴(𝑡) sin 19𝑡: a high frequency 
vibration sin 19𝑡 with periodic amplitude 𝐴(𝑡) = sin 𝑡.
Remember that this is a graph of the extension 𝑥(𝑡) of 
the spring, not a picture of the spring itself! To see 
the latter, see the animations here. −1
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http://www.youtube.com/watch?v=bX64UJpbsJI
http://www.math.uci.edu/~ndonalds/math3d/springs/forced.html


Case 1(b): Resonance (𝜔 = 𝜔0) In this special subcase the driving frequency 𝜔 equals the natural 
frequency 𝜔0. The obvious guess from the previous subcase already solves the homogeneous ODE, so 
we try multiplying by 𝑡:

𝑥𝑃(𝑡) = 𝑎𝑡 cos 𝜔0𝑡 + 𝑏𝑡 sin 𝜔0𝑡

Substituting into the ODE and solving for 𝑎, 𝑏 yields the general solution

𝑥(𝑡) = 𝑥𝑃(𝑡) + 𝑥𝐶(𝑡) =
𝐹0

2𝑚𝜔0
𝑡 sin 𝜔0𝑡 + 𝑐1 cos 𝜔𝑡 + 𝑐2 sin 𝜔0𝑡

𝑥𝑃(𝑡) is also the particular solution satisfying the initial conditions 𝑥(0) = 0 = 𝑥′(0).

• 𝑥𝑃(𝑡) is a sine wave with ever-increasing amplitude 𝐹0
2𝑚𝜔0

𝑡: eventually the spring tears itself apart!

• The resonance solution is the limit lim𝜔→𝜔0
𝑥𝑃(𝑡) of the beating solutions from subcase 1(a).

Examples Consider the initial value problem 𝑥″ + 16𝑥 = cos 𝜔𝑡, 𝑥(0) = 𝑥′(0) = 0. The natural 
frequency is 𝜔0 = 4 rad/s. The graphs depict the solutions for four different driving frequencies 𝜔: 
the final case is resonance. Animations showing how these examples change with 𝜔 are here.
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𝜔 = 5 𝑥(𝑡) = 2
9 sin 𝑡

2 sin 9
2 𝑡 𝜔 = 4 𝑥(𝑡) = 1

8 𝑡 sin 4𝑡

Summary of undamped, driven motion The initial value problem 𝑚𝑥″ + 𝑘𝑥 = 𝐹0 cos 𝜔𝑡 with initial 
conditions 𝑥(0) = 0 = 𝑥′(0) has solution

𝑥(𝑡) =
⎧{
⎨{⎩

2𝐹0
𝑚(𝜔2

0−𝜔2)
sin 𝜔0−𝜔

2 𝑡 sin 𝜔0+𝜔
2 𝑡 if 𝜔 ≠ 𝜔0

𝐹0
2𝑚𝜔0

𝑡 sin 𝜔0𝑡 if 𝜔 = 𝜔0

where 𝜔0 = √ 𝑘
𝑚 . As 𝜔 → 𝜔0, low frequency beats of increasing amplitude occur.
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Case 2: Damped-driven motion & practical resonance

In the presence of damping 𝑐 > 0, the complementary function is the solution to the free oscillator

𝑚𝑥″ + 𝑐𝑥′ + 𝑘𝑥 = 𝐹0 cos 𝜔𝑡 ⟹ 𝑥″ + 2𝑝𝑥′ + 𝜔2
0𝑥 =

𝐹0
𝑚 cos 𝜔𝑡

Damping type Condition Complementary Function 𝑥𝐶(𝑡)

Over-damping 𝑐2 > 4𝑘𝑚 𝑒−𝑝𝑡 (𝑐1𝑒−√𝑝2−𝜔2
0𝑡 + 𝑐2𝑒√𝑝2−𝜔2

0𝑡)

Critical damping 𝑐2 = 4𝑘𝑚 (𝑐1 + 𝑐2𝑡)𝑒−𝑝𝑡

Under-damping 𝑐2 < 4𝑘𝑚 𝑒−𝑝𝑡(𝑐1 cos 𝜔1𝑡 + 𝑐2 sin 𝜔1𝑡) where 𝜔1 = √𝜔2
0 − 𝑝2

Regardless of initial conditions:

• 𝑝 = 𝑐
2𝑚 > 0 ⟹ 𝑥𝐶 is transient: lim

𝑡→∞
𝑥𝐶(𝑡) = 0.

• For large 𝑡, we have 𝑥(𝑡) ≈ 𝑥𝑃(𝑡) = 𝑎 cos 𝜔𝑡 + 𝑏 sin 𝜔𝑡 is a steady-periodic solution.

Example Find the steady-periodic solution for the damped-driven oscillator 𝑥″ + 2𝑥′ + 6𝑥 = cos 𝜔𝑡.
Substitute 𝑥𝑃(𝑡) = 𝑎 cos 𝜔𝑡 + 𝑏 sin 𝜔𝑡 into the ODE:

(−𝑎𝜔2 + 2𝑏𝜔 + 6𝑎) cos 𝜔𝑡 + (−𝑏𝜔2 − 2𝑎𝜔 + 6𝑏) sin 𝜔𝑡 = cos 𝜔𝑡

Solving for 𝑎 and 𝑏 produces the steady-periodic solution

𝑥𝑃(𝑡) =
1

(𝜔2 − 6)2 + 4𝜔2 ((𝜔2 − 6) cos 𝜔𝑡 + 4𝜔 sin 𝜔𝑡)

=
1

√(𝜔2 − 6)2 + 4𝜔2
cos (𝜔𝑡 − 𝛾)

=
1

√(𝜔2 − 4)2 + 20
cos (𝜔𝑡 − 𝛾)
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𝑥𝑃(𝑡) = 1
3√5

cos 3𝑡  and 1
2√5

cos 2𝑡

where 𝛾 is the phase angle. Note how the amplitude depends on the driving frequency 𝜔: solutions 
are drawn with 𝜔 = 3 and 𝜔 = 2 rad/s. This last, the maximum amplitude solution, is an example of a 
general phenomenon known as practical resonance.

General situation The long-term, steady-periodic solution is

𝑥𝑃(𝑡) =
𝐹0

𝑚√(𝜔2 − 𝜔2
0)2 + 4𝑝2𝜔2

cos(𝜔𝑡 − 𝛾)

The amplitude is a function of the driving frequency 𝜔. For fixed 𝐹0, maximum amplitude occurs 
when the denominator is minimal: a little algebra shows that this is when

𝜔 =
⎧{
⎨{⎩

√𝜔2
0 − 2𝑝2 if 2𝑝2 < 𝜔2

0 (equivalently 𝑐2 < 2𝑘𝑚)
0 if 2𝑝2 ≥ 𝜔2

0 (𝑐2 ≥ 2𝑘𝑚)

Setting 𝜔 = √𝜔2
0 − 2𝑝2 to maximize amplitude is practical resonance.
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Example: Glass smashing! Model the transverse motion of the lip of a wine glass by the equation1

1
10𝑥″ + 1

5𝑥′ + 1, 000, 000𝑥 = 𝐹0 cos 𝜔𝑡

𝐹0 cos 𝜔𝑡 models vibration of the air due to ambient sound. If one taps the glass, causing it to ring, the 
resulting motion is the complementary function

𝑥𝐶(𝑡) = 𝑒−𝑡(𝑐1 cos 𝜔1𝑡 + 𝑐2 sin 𝜔1𝑡)

with frequency

𝜔1
2𝜋 =

𝜔1
2𝜋

√𝜔2
0 − 𝑝2 =

𝜔1
2𝜋

√ 𝑘
𝑚 − 𝑐2

4𝑚2 = 503.2920959 Hz

0
1 2 3

t

x

≈ 1 octave above middle C. The plot of this motion is almost impossible to visualize due to its high 
frequency. Driving the oscillator models subjecting the glass to a loud tone of frequency 𝑓 = 𝜔

2𝜋 : 
practical resonance occurs when

𝑓 =
𝜔
2𝜋 =

1
2𝜋

√𝜔2
0 − 2𝑝2 = 503.2920707 Hz

Note how close this is to the natural frequency of the glass! 
The response of the glass is plotted if one supplies a tone at 
the resonant frequency, and both 1 and 2 Hz either side. You 
have to have a very good musical ear to notice a difference of 
1 Hz at pitches like this: a singer must be both very loud and 
very accurate if they want to crack the glass…

0 t

xP

Application: RLC circuits and Electrical Resonance

An RLC circuit has a source voltage2 𝑉(𝑡) = 𝑉0 sin 𝜔𝑡, a resistor 𝑅 Ohms, a capacitor 𝐶 Farads, and an 
inductor 𝐿 Henries connected in series.
The current flow in the circuit is 𝐼 = d𝑄

d𝑡  amperes, where 𝑄 (coulombs) is the charge stored in the 
capacitor at time 𝑡. By summing the voltage drop across each component, we obtain an ODE:

𝐿
d𝐼
d𝑡 + 𝑅𝐼 +

1
𝐶𝑄 = 𝑉(𝑡) ⟹ 𝐿

d2𝐼
d𝑡2 + 𝑅

d𝐼
d𝑡 +

1
𝐶𝐼 = 𝑉′(𝑡)

This is the damped-driven spring equation in disguise: (𝑚, 𝑐, 𝑘, 𝐹0) ⟷ (𝐿, 𝑅, 𝐶−1, 𝜔𝑉0). The amplitude 
of the steady-periodic current

𝐼 =
𝑉0

√𝑅2 + (𝜔𝐿 − 1
𝜔𝐶)

2

is plainly maximized when 𝜔2𝐿𝐶 = 1: this is known as electrical resonance, a concept that has many 
applications in electronics and electrical engineering.

1Small mass, small damping, high spring constant
2For instance, US mains electricity is approximately 𝑉(𝑡) = 110√2 sin(120𝜋𝑡)
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   𝐹  (  𝑡  ) 


$F(t)$


   𝐹 


$F$


           𝑚    𝑥  ″   +  𝑐    𝑥  ′   +  𝑘  𝑥  =    𝐹  0      cos     𝜔  𝑡    


\begin {equation*}mx''+cx'+kx=F_0\cos \omega t\end {equation*}


   𝑚    𝑥  ″   +  𝑘  𝑥  =    𝐹  0      cos     𝜔  𝑡 


$mx''+kx=F_0\cos \omega t$


   𝑐  =  0 


$c=0$


     𝜔  0   =      𝑘  𝑚   


$\omega _0=\sqrt {\frac km}$


             𝑥  𝐶   (  𝑡  )  =    𝑐  1      cos       𝜔  0   𝑡  +    𝑐  2      sin       𝜔  0   𝑡    


\begin {equation*}x_C(t)=c_1\cos \omega _0t+c_2\sin \omega _0t\end {equation*}


     𝑥  𝑃   (  𝑡  ) 


$x_P(t)$


   𝜔  ≠    𝜔  0  


$\omega \neq \omega _0$


     𝐹  0      cos     𝜔  𝑡 


$F_0\cos \omega t$


             𝑥  𝑃   (  𝑡  )  =  𝑎     cos     𝜔  𝑡  +  𝑏     sin     𝜔  𝑡    


\begin {equation*}x_P(t)=a\cos \omega t+b\sin \omega t\end {equation*}


           𝑚    𝑥  𝑃  ″   +  𝑘    𝑥  𝑃   =  (  −  𝑚  𝑎    𝜔  2   +  𝑘  𝑎  )   cos     𝜔  𝑡  +  (  −  𝑚  𝑏    𝜔  2   +  𝑘  𝑏  )   sin     𝜔  𝑡  =    𝐹  0      cos     𝜔  𝑡            ⟹    𝑎  =      𝐹  0     𝑘  −  𝑚    𝜔  2     =      𝐹  0     𝑚  (    𝜔  0  2   −    𝜔  2   )    ,    𝑏  =  0    


\begin {gather*}mx_P''+kx_P=(-ma\omega ^2+ka)\cos \omega t+(-mb\omega ^2+kb)\sin \omega t =F_0\cos \omega t\\ \implies a=\frac {F_0}{k-m\omega ^2}=\frac {F_0}{m(\omega _0^2-\omega ^2)},\quad b=0\end {gather*}


           𝑥  (  𝑡  )  =    𝑥  𝑃   (  𝑡  )  +    𝑥  𝐶   (  𝑡  )  =      𝐹  0     𝑚  (    𝜔  0  2   −    𝜔  2   )       cos     𝜔  𝑡  +    𝑐  1      cos       𝜔  0   𝑡  +    𝑐  2      sin       𝜔  0   𝑡    


\begin {equation*}x(t)=x_P(t)+x_C(t) =\frac {F_0}{m(\omega _0^2-\omega ^2)}\cos \omega t+ c_1\cos \omega _0t+c_2\sin \omega _0t\end {equation*}


     𝐹  0  


$F_0$


   𝜔 


$\omega $


     𝜔  0  


$\omega _0$


   𝑥  (  0  )  =  0  =    𝑥  ′   (  0  ) 


$x(0)=0=x'(0)$


           𝑥  (  𝑡  )  =      𝐹  0     𝑚  (    𝜔  0  2   −    𝜔  2   )    (   cos     𝜔  𝑡  −   cos       𝜔  0   𝑡  )  =      2    𝐹  0      𝑚  (    𝜔  0  2   −    𝜔  2   )       sin           𝜔  0   −  𝜔   2   𝑡     sin           𝜔  0   +  𝜔   2   𝑡    


\begin {equation*}x(t) =\frac {F_0}{m(\omega _0^2-\omega ^2)}\bigl (\cos \omega t-\cos \omega _0t\bigr ) =\frac {2F_0}{m(\omega _0^2-\omega ^2)}\sin \frac {\omega _0-\omega }2t\sin \frac {\omega _0+\omega }2t\end {equation*}


     𝜔  0   ,  𝜔 


$\omega _0,\omega $


     𝜔  0   −  𝜔  ≪    𝜔  0   +  𝜔 


$\omega _0-\omega \ll \omega _0+\omega $


         𝜔  0   +  𝜔     4  𝜋   


$\frac {\omega _0+\omega }{4\pi }$


       |    𝜔  0   −  𝜔  |     4  𝜋   


$\frac {\nm {\omega _0-\omega }}{4\pi }$


     𝑥  ″   +   400   𝑥  =   38      cos      18   𝑡 


$x''+400x=38\cos 18t$


     𝜔  0   =     400    =   20  


$\omega _0=\sqrt {400}=20$


   𝜔  =   18  


$\omega =18$


$x(0)=0=x'(0)$


   𝑥  (  𝑡  )  =   sin     𝑡     sin      19   𝑡  =  𝐴  (  𝑡  )   sin      19   𝑡 


$\textcolor {blue}{x(t)=\sin t\sin 19t=A(t)\sin 19t}$


    sin      19   𝑡 


$\sin 19t$


   𝐴  (  𝑡  )  =   sin     𝑡 


$A(t)=\sin t$


   𝑥  (  𝑡  ) 


$x(t)$


   𝜔  =    𝜔  0  


$\omega =\omega _0$


$\omega $


$\omega _0$


   𝑡 


$t$


             𝑥  𝑃   (  𝑡  )  =  𝑎  𝑡     cos       𝜔  0   𝑡  +  𝑏  𝑡     sin       𝜔  0   𝑡    


\begin {equation*}x_P(t)=at\cos \omega _0t+bt\sin \omega _0t\end {equation*}


   𝑎  ,  𝑏 


$a,b$


           𝑥  (  𝑡  )  =    𝑥  𝑃   (  𝑡  )  +    𝑥  𝐶   (  𝑡  )  =      𝐹  0     2  𝑚    𝜔  0     𝑡     sin       𝜔  0   𝑡  +    𝑐  1      cos     𝜔  𝑡  +    𝑐  2      sin       𝜔  0   𝑡    


\begin {equation*}x(t)=x_P(t)+x_C(t) =\frac {F_0}{2m\omega _0}t\sin \omega _0t +c_1\cos \omega t+c_2\sin \omega _0t\end {equation*}


$x_P(t)$


$x(0)=0=x'(0)$


$x_P(t)$


       𝐹  0     2  𝑚    𝜔  0     𝑡 


$\frac {F_0}{2m\omega _0}t$


      lim     𝜔  →    𝜔  0         𝑥  𝑃   (  𝑡  ) 


$\lim \limits _{\omega \to \omega _0}x_P(t)$


     𝑥  ″   +   16   𝑥  =   cos     𝜔  𝑡 


$x''+16x=\cos \omega t$


   𝑥  (  0  )  =    𝑥  ′   (  0  )  =  0 


$x(0)=x'(0)=0$


     𝜔  0   =  4 


$\omega _0=4$


$\omega $


$\omega $


   𝜔  =   20  


$\omega =20$


   𝑥  (  𝑡  )  =    1   192       sin     8  𝑡     sin      12   𝑡 


$x(t)=\frac 1{192}\sin 8t\sin 12t$


   𝜔  =  6 


$\omega =6$


   𝑥  (  𝑡  )  =    1   10       sin     𝑡     sin     5  𝑡 


$x(t)=\frac 1{10}\sin t\sin 5t$


   𝜔  =  5 


$\omega =5$


   𝑥  (  𝑡  )  =    2  9      sin       𝑡  2      sin       9  2   𝑡 


$x(t)=\frac 29\sin \frac t2\sin \frac 92t$


   𝜔  =  4 


$\omega =4$


   𝑥  (  𝑡  )  =    1  8   𝑡     sin     4  𝑡 


$x(t)=\frac 18t\sin 4t$


$mx''+kx=F_0\cos \omega t$


$x(0)=0=x'(0)$


           𝑥  (  𝑡  )  =    {                2    𝐹  0      𝑚  (    𝜔  0  2   −    𝜔  2   )       sin           𝜔  0   −  𝜔   2   𝑡     sin           𝜔  0   +  𝜔   2   𝑡           if    𝜔  ≠    𝜔  0             𝐹  0     2  𝑚    𝜔  0     𝑡     sin       𝜔  0   𝑡           if    𝜔  =    𝜔  0              


\begin {equation*}x(t)= \begin {cases} \frac {2F_0}{m(\omega ^2_0-\omega ^2)}\sin \frac {\omega _0-\omega }2t\sin \frac {\omega _0+\omega }2t &\text {if }\omega \neq \omega _0\\ \frac {F_0}{2m\omega _0}t\sin \omega _0t &\text {if }\omega =\omega _0 \end {cases}\end {equation*}


$\omega _0=\sqrt {\frac km}$


   𝜔  →    𝜔  0  


$\omega \to \omega _0$


   𝑐  >  0 


$c>0$


           𝑚    𝑥  ″   +  𝑐    𝑥  ′   +  𝑘  𝑥  =    𝐹  0      cos     𝜔  𝑡    ⟹      𝑥  ″   +  2  𝑝    𝑥  ′   +    𝜔  0  2   𝑥  =      𝐹  0   𝑚      cos     𝜔  𝑡                   Damping type       Condition       Complementary Function       𝑥  𝐶   (  𝑡  )           Over-damping        𝑐  2   >  4  𝑘  𝑚         𝑒    −  𝑝  𝑡        (    𝑐  1     𝑒    −        𝑝  2   −    𝜔  0  2     𝑡    +    𝑐  2     𝑒          𝑝  2   −    𝜔  0  2     𝑡    )           Critical damping        𝑐  2   =  4  𝑘  𝑚       (    𝑐  1   +    𝑐  2   𝑡  )    𝑒    −  𝑝  𝑡            Under-damping        𝑐  2   <  4  𝑘  𝑚         𝑒    −  𝑝  𝑡    (    𝑐  1      cos       𝜔  1   𝑡  +    𝑐  2      sin       𝜔  1   𝑡  )    where      𝜔  1   =        𝜔  0  2   −    𝑝  2             


\begin {gather*}mx''+cx'+kx=F_0\cos \omega t \implies x''+2px'+\omega _0^2x=\frac {F_0}m\cos \omega t\\[0.2cm] \begin {array}{@{}l|l|l} \text {Damping type}&\text {Condition}&\text {Complementary Function $x_C(t)$}\\[0.2cm]\hline \text {Over-damping}&c^2>4km&\displaystyle e^{-pt}\left (c_1e^{-\sqrt {p^2-\omega _0^2}t}+c_2e^{\sqrt {p^2-\omega _0^2}t}\right )\\[0.2cm] \text {Critical damping}&c^2=4km&\displaystyle (c_1+c_2t)e^{-pt}\\[0.2cm] \text {Under-damping}&c^2<4km&\displaystyle e^{-pt}\bigl (c_1\cos \omega _1t +c_2\sin \omega _1t\bigr )\text { where }\omega _1=\sqrt {\omega _0^2-p^2} \end {array}\end {gather*}


   𝑝  =    𝑐    2  𝑚    >  0  ⟹    𝑥  𝐶  


$p=\frac c{2m}>0\Longrightarrow x_C$


      lim     𝑡  →  ∞        𝑥  𝐶   (  𝑡  )  =  0 


$\lim \limits _{t\to \infty }x_C(t)=0$


$t$


   𝑥  (  𝑡  )  ≈    𝑥  𝑃   (  𝑡  )  =  𝑎     cos     𝜔  𝑡  +  𝑏     sin     𝜔  𝑡 


$x(t)\approx x_P(t)=a\cos \omega t+b\sin \omega t$


     𝑥  ″   +  2    𝑥  ′   +  6  𝑥  =   cos     𝜔  𝑡 


$x''+2x'+6x=\cos \omega t$


     𝑥  𝑃   (  𝑡  )  =  𝑎     cos     𝜔  𝑡  +  𝑏     sin     𝜔  𝑡 


$x_P(t)=a\cos \omega t+b\sin \omega t$


           (  −  𝑎    𝜔  2   +  2  𝑏  𝜔  +  6  𝑎  )   cos     𝜔  𝑡  +  (  −  𝑏    𝜔  2   −  2  𝑎  𝜔  +  6  𝑏  )   sin     𝜔  𝑡  =   cos     𝜔  𝑡    


\begin {equation*}(-a\omega ^2+2b\omega +6a)\cos \omega t+(-b\omega ^2-2a\omega +6b)\sin \omega t=\cos \omega t\end {equation*}


   𝑎 


$a$


   𝑏 


$b$


             𝑥  𝑃   (  𝑡  )     =    1    (    𝜔  2   −  6    )  2   +  4    𝜔  2         (  (    𝜔  2   −  6  )   cos     𝜔  𝑡  +  4  𝜔     sin     𝜔  𝑡  )             =    1      (    𝜔  2   −  6    )  2   +  4    𝜔  2         cos       (  𝜔  𝑡  −  𝛾  )             =    1      (    𝜔  2   −  4    )  2   +   20         cos       (  𝜔  𝑡  −  𝛾  )     


\begin {align*}x_P(t) &=\frac 1{(\omega ^2-6)^2+4\omega ^2}\left ((\omega ^2-6)\cos \omega t+4\omega \sin \omega t\right )\\ &=\frac 1{\sqrt {(\omega ^2-6)^2+4\omega ^2}}\cos \left (\omega t-\gamma \right )\\ &=\frac 1{\sqrt {(\omega ^2-4)^2+20}}\cos \left (\omega t-\gamma \right )\end {align*}


     𝑥  𝑃   (  𝑡  )  =      1    3    5        cos     3  𝑡  


$x_P(t)=\textcolor {blue}{\frac 1{3\sqrt 5}\cos 3t}$


     1    2    5        cos     2  𝑡 


$\textcolor {Green}{\frac 1{2\sqrt 5}\cos 2t}$


   𝛾 


$\gamma $


$\omega $


   𝜔  =  3 


$\textcolor {blue}{\omega =3}$


   𝜔  =  2 


$\textcolor {Green}{\omega =2}$


             𝑥  𝑃   (  𝑡  )     =      𝐹  0     𝑚      (    𝜔  2   −    𝜔  0  2     )  2   +  4    𝑝  2     𝜔  2          cos   (  𝜔  𝑡  −  𝛾  )    


\begin {align*}x_P(t) &=\frac {F_0}{m\sqrt {(\omega ^2-\omega _0^2)^2+4p^2\omega ^2}}\cos (\omega t-\gamma )\end {align*}


$\omega $


$F_0$


           𝜔  =    {                  𝜔  0  2   −  2    𝑝  2              if    2    𝑝  2   <    𝜔  0  2     (   equivalently      𝑐  2   <  2  𝑘  𝑚  )        0           if    2    𝑝  2   ≥    𝜔  0  2     (    𝑐  2   ≥  2  𝑘  𝑚  )             


\begin {equation*}\omega = \begin {cases} \sqrt {\omega _0^2-2p^2} &\text {if }2p^2<\omega _0^2 \quad (\text {equivalently } c^2<2km)\\ 0&\text {if }2p^2\ge \omega _0^2 \quad (c^2\ge 2km) \end {cases}\end {equation*}


   𝜔  =        𝜔  0  2   −  2    𝑝  2    


$\omega =\sqrt {\omega _0^2-2p^2}$


               1   10       𝑥  ″   +      1  5      𝑥  ′   +  1  ,   000   ,   000   𝑥  =    𝐹  0      cos     𝜔  𝑡    


\begin {equation*}\tfrac 1{10}x''+\tfrac 15x'+1,000,000x=F_0\cos \omega t\end {equation*}


$F_0\cos \omega t$


             𝑥  𝐶   (  𝑡  )  =    𝑒    −  𝑡    (    𝑐  1      cos       𝜔  1   𝑡  +    𝑐  2      sin       𝜔  1   𝑡  )    


\begin {equation*}x_C(t)=e^{-t}(c_1\cos \omega _1t+c_2\sin \omega _1t)\end {equation*}


               𝜔  1     2  𝜋    =      𝜔  1     2  𝜋          𝜔  0  2   −    𝑝  2     =      𝜔  1     2  𝜋            𝑘  𝑚    −        𝑐  2     4    𝑚  2        =   503   .   2920959      Hz     


\begin {equation*}\frac {\omega _1}{2\pi } =\frac {\omega _1}{2\pi }\sqrt {\omega _0^2-p^2} =\frac {\omega _1}{2\pi }\sqrt {\tfrac km-\tfrac {c^2}{4m^2}} =503.2920959\,\text {Hz}\end {equation*}


   ≈ 


$\approx $


   𝑓  =    𝜔    2  𝜋   


$f=\frac \omega {2\pi }$


           𝑓  =    𝜔    2  𝜋    =    1    2  𝜋          𝜔  0  2   −  2    𝑝  2     =   503   .   2920707      Hz     


\begin {equation*}f=\frac \omega {2\pi } =\frac 1{2\pi }\sqrt {\omega ^2_0-2p^2} =503.2920707\,\text {Hz}\end {equation*}


   𝑉  (  𝑡  )  =   110     2      sin   (   120   𝜋  𝑡  ) 


$V(t)=110\sqrt 2\sin (120\pi t)$


   𝑉  (  𝑡  )  =    𝑉  0      sin     𝜔  𝑡 


$V(t)=V_0\sin \omega t$


   𝑅 


$R$


   𝐶 


$C$


   𝐿 


$L$


   𝐼  =      d  𝑄     d  𝑡   


$I=\diff [Q]{t}$


   𝑄 


$Q$


$t$


           𝐿      d  𝐼     d  𝑡    +  𝑅  𝐼  +    1  𝐶   𝑄  =  𝑉  (  𝑡  )    ⟹    𝐿        d  2   𝐼     d    𝑡  2     +  𝑅      d  𝐼     d  𝑡    +    1  𝐶   𝐼  =    𝑉  ′   (  𝑡  )    


\begin {equation*}L\diff [I]{t}+RI+\frac 1CQ=V(t)\implies L\diff [^2I]{t^2}+R\diff [I]{t}+\frac 1CI=V'(t)\end {equation*}


   (  𝑚  ,  𝑐  ,  𝑘  ,    𝐹  0   )  ⟷  (  𝐿  ,  𝑅  ,    𝐶    −  1    ,  𝜔    𝑉  0   ) 


$(m,c,k,F_0)\longleftrightarrow (L,R,C^{-1},\omega V_0)$


           𝐼  =      𝑉  0         𝑅  2   +      (  𝜔  𝐿  −    1    𝜔  𝐶    )   2        


\begin {equation*}I=\frac {V_0}{\sqrt {R^2+\left (\omega L-\frac 1{\omega C}\right )^2}}\end {equation*}


     𝜔  2   𝐿  𝐶  =  1 


$\omega ^2LC=1$


$C$


     𝜔    −  2      𝐿    −  1   


$\omega ^{-2}L^{-1}$


   𝐶  =  0 


$C=0$


   𝐼  (  𝑡  )  =      𝑉  0         𝑅  2   +    𝜔  2     𝐿  2         cos   (  𝜔  𝑡  −  𝛾  ) 


$I(t)=\frac {V_0}{\sqrt {R^2+\omega ^2L^2}}\cos (\omega t-\gamma )$


   𝐶  =    𝜔    −  2      𝐿    −  1   


$C=\omega ^{-2}L^{-1}$


   𝐼  =    𝑉  0   /  𝑅 


$I=V_0/R$


$\omega $


$V(t)=V_0\sin \omega t$


$C=\omega ^{-2}L^{-1}$


$\omega $

http://www.youtube.com/watch?v=Jy8js2FmGiY
http://en.wikipedia.org/wiki/File:RLC_series_circuit.png


Audio Hum Background noise is often related to an electrically resonant current. Hum can be reduced 
by adjusting the capacitance 𝐶 to be very different to 𝜔−2𝐿−1.

Reducing power loss If 𝐶 = 0, the current flow is 𝐼(𝑡) = 𝑉0

√𝑅2+𝜔2𝐿2
cos(𝜔𝑡 − 𝛾). An inductor reduces 

(alternating) current flow, acting like extra resistance. By inserting a capacitor 𝐶 = 𝜔−2𝐿−1 into 
the circuit, the current flow increases to what one would expect (𝐼 = 𝑉0/𝑅) thus reducing power 
loss from natural inductance.3

Tuning an (AM) radio A radio station broadcasting at frequency 𝜔 induces a voltage 𝑉(𝑡) = 𝑉0 sin 𝜔𝑡
in a radio antenna, resulting in a current flow which (after amplification) powers a loudspeaker.

An old AM radio dial is a variable capacitor. By tuning it to 𝐶 = 𝜔−2𝐿−1, the signal with 
frequency 𝜔 is amplified, and current flows induced by other radio frequencies are diminished.

3As an electrical component, an inductor is often just a tight coil of wire: with lots of wiring, large electrical systems can 
easily form natural inductors!
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