Forced Oscillations and Resonance (Section 2.6)

Consider the spring (oscillator) equation with external force F(t). A basic case assumes F periodic,

mx" + cx’ + kx = F( cos wt

Many real-life situations can be modeled this way, for example buildings in an earthquake, where the
ground shakes periodically. In the abstract, there are two generic cases.

Case 1: Undamped, Driven Motion
The equation is mx” 4+ kx = F( cos wt (no friction ¢ = 0). In the absence of an external force, the spring
oscillates with circular frequency wy = \/g : this provides the complementary function

Xc(t) = ¢q cos wyt + ¢ sin wyt

It remains to find a suitable particular integral xp(t). For this there are two sub-cases.

Case 1(a): Beating (w # wy) The most likely possibility is that the frequency of the external force
Fy cos wt differs from the natural frequency of the spring. We try a particular integral of the form

Xp(t) = acoswt + bsin wt
Substituting into the differential equation, we see that
mx} + kxp = (—maw? + ka) cos wt + (—mbw? + kb) sin wt = F( cos wt
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from which the general solution is

Fy

x(t) =xp(t) +xc(t) = m(w% — D

cos wt + ¢q cos wyt + ¢, sin wyt
The result is a combination of two periodic motions with different frequencies. Larger F, and having w
close to wy produce more motion. For simplicity, suppose our initial conditions are x(0) = 0 = x'(0)
(spring starts at rest). A little algebra and a trigonometric identity yield
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whose amplitude varies at a lower frequency (% Hz). This phenomenon is known as beating: a
sound wave like this changes in volume.

If wy, w are close in value, then wy — w K wy + w, and we have a high-frequency ( Hz) oscillation

Example A spring with x” + 400x = 38 cos 18t has

natural frequency wy = V400 = 20 rad/s and driving
frequency w = 18 rad/s.

The solution with initial conditions x(0) = 0 = x'(0)
is x(t) = sintsin 19t = A(t) sin19¢: a high frequency
vibration sin 19t with periodic amplitude A(#) = sint.
Remember that this is a graph of the extension x(t) of

the spring, not a picture of the spring itself! To see
the latter, see the animations



http://www.youtube.com/watch?v=bX64UJpbsJI
http://www.math.uci.edu/~ndonalds/math3d/springs/forced.html

Case 1(b): Resonance (w = wy) In this special subcase the driving frequency w equals the natural
frequency wy. The obvious guess from the previous subcase already solves the homogeneous ODE, so
we try multiplying by ¢:

xp(t) = at cos wyt + bt sin wyt
Substituting into the ODE and solving for a, b yields the general solution

Fy

x(t) =xp(t) +xc(t) = 2

tsin wyt + ¢1 cos wt + ¢, sin wyt

xp(t) is also the particular solution satisfying the initial conditions x(0) = 0 = x'(0).

Fo

Smicog t: eventually the spring tears itself apart!

* xp(t) is a sine wave with ever-increasing amplitude

¢ The resonance solution is the limit wlilg xp(t) of the beating solutions from subcase 1(a).
—Wo

Examples Consider the initial value problem x” + 16x = coswt, x(0) = x'(0) = 0. The natural
frequency is wy = 4 rad/s. The graphs depict the solutions for four different driving frequencies w:
the final case is resonance. Animations showing how these examples change with w are

X X
0.005 0.1

MIRLaLE

w=20 x(t) = 19LzsinStsiant‘ w=6 x(t)= f—osintsin5t

0.2 17

—0.2 7 —1

£

. 9 _ _ 1 .
5 sin 5 ¢ w=4 x(t)= gtsm4t

w=>5 x(t) = %sin
Summary of undamped, driven motion The initial value problem mx" + kx = F cos wt with initial
conditions x(0) = 0 = x'(0) has solution
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where wy = % As w — wy, low frequency beats of increasing amplitude occur.
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http://www.math.uci.edu/~ndonalds/math3d/springs/forced.html

Case 2: Damped-driven motion & practical resonance

In the presence of damping ¢ > 0, the complementary function is the solution to the free oscillator
" ’ " 1 2 FO
mx" 4+ cx" + kx = Fycoswt = x" + 2px’ + wix = Ecoswt

Damping type Condition | Complementary Function x(t)
Over-damping | ¢? > 4km | ¢! (cle_\lpz_“’gt + ngvpz—w3f>

Critical damping | ¢ = 4km | (¢; + cot)e

Under-damping | ¢? < 4km | e™? t(cl cos wyt + ¢ sinw; t) where wy = w% — p?
Regardless of initial conditions:

* p=5->0= xcis transient: hm xc(t) = 0.

e For large t, we have x(t) = xp(t) = acos wt + bsin wt is a steady-periodic solution.
Example Find the steady-periodic solution for the damped-driven oscillator x” + 2x" 4+ 6x = cos wt.
Substitute xp(t) = acos wt + b sin wt into the ODE:
(—aw? + 2bw + 6a) cos wt + (—bw? — 2aw + 6b) sin wt = cos wt

Solving for a and b produces the steady-periodic solution

Xp
xp(t) = o TR ((w? — 6) cos wt + 4w sin wt)
1
= cos (wt — ) 0
V(w? —6)2 + 4w? \/ \/
1
= cos (wt — )
V(w? —4)2 +20
xp(t) = —coth and — cosZt

where 7 is the phase angle. Note how the amplitude depends on the drlvmg frequency w: solut1ons
are drawn with w = 3 and w = 2 rad/s. This last, the maximum amplitude solution, is an example of a
general phenomenon known as practical resonance.

General situation The long-term, steady-periodic solution is

Fy
xp(t) = cos(wt — )

m\/(a}2 — w)? + 4p?w?

The amplitude is a function of the driving frequency w. For fixed Fj, maximum amplitude occurs
when the denominator is minimal: a little algebra shows that this is when

w {‘/w% —2p% if2p? < w3 (equivalently c? < 2km)

0 if 2p2 > w3 (c? > 2km)
Setting w = y/wj — 2p? to maximize amplitude is practical resonance.
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Example: Glass smashing! Model the transverse motion of the lip of a wine glass by the equatio
25X + 2x' +1,000,000x = Fy cos wt

Fy cos wt models vibration of the air due to ambient sound. If one taps the glass, causing it to ring, the
resulting motion is the complementary function

X

xc(t) = e~t(cq cos wyt + ¢y sinwyt)

with frequency
Wi _ W oo ﬂ\/ﬁ _
L= L Jwh - = 2k - £ = 5032920959 Hy

~ 1 octave above middle C. The plot of this motion is almost impossible to visualize due to its high
frequ.ency. Driving the oscillator models subjecting the glass to a loud tone of frequency f = 5—:
practical resonance occurs when

w 1
_ — [ 2 _ 9,2 —
f= Tl w§ —2p 503.2920707 Hz

xp
Note how close this is to the natural frequency of the glass!
The response of the glass is plotted if one supplies a tone at

the resonant frequency, and both 1 and 2 Hz either side. You ALA

O VY Y Y Y Y Y YN Y Y YT Y Y Y Y
have to have a very good musical ear to notice a difference of '
1 Hz at pitches like this: a singer must be both very loud and

very accurate if they want to crack the glass.. .|

|11

w

Application: RLC circuits and Electrical Resonance

An RLC circuit{has a source VoltageEI V(t) = Vysinwt, a resistor R Ohms, a capacitor C Farads, and an
inductor L Henries connected in series.

The current flow in the circuit is I = % amperes, where Q (coulombs) is the charge stored in the

capacitor at time t. By summing the voltage drop across each component, we obtain an ODE:

LY vy Lo— v Ld2l R L v
a TRIHGER=VH = Ly + R+ =V

This is the damped-driven spring equation in disguise: (m,c,k,Fy) «— (L, R, C1,wVy). The amplitude
of the steady-periodic current

Vo

\/R2 + (wL - %)2

is plainly maximized when w?LC = 1: this is known as electrical resonance, a concept that has many
applications in electronics and electrical engineering.

I =

1Small mass, small damping, high spring constant
2For instance, US mains electricity is approximately V (¢) = 1 10\/5 sin(1207tt)
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   𝐹  (  𝑡  ) 


$F(t)$


   𝐹 


$F$


           𝑚    𝑥  ″   +  𝑐    𝑥  ′   +  𝑘  𝑥  =    𝐹  0      cos     𝜔  𝑡    


\begin {equation*}mx''+cx'+kx=F_0\cos \omega t\end {equation*}


   𝑚    𝑥  ″   +  𝑘  𝑥  =    𝐹  0      cos     𝜔  𝑡 


$mx''+kx=F_0\cos \omega t$


   𝑐  =  0 


$c=0$


     𝜔  0   =      𝑘  𝑚   


$\omega _0=\sqrt {\frac km}$


             𝑥  𝐶   (  𝑡  )  =    𝑐  1      cos       𝜔  0   𝑡  +    𝑐  2      sin       𝜔  0   𝑡    


\begin {equation*}x_C(t)=c_1\cos \omega _0t+c_2\sin \omega _0t\end {equation*}


     𝑥  𝑃   (  𝑡  ) 


$x_P(t)$


   𝜔  ≠    𝜔  0  


$\omega \neq \omega _0$


     𝐹  0      cos     𝜔  𝑡 


$F_0\cos \omega t$


             𝑥  𝑃   (  𝑡  )  =  𝑎     cos     𝜔  𝑡  +  𝑏     sin     𝜔  𝑡    


\begin {equation*}x_P(t)=a\cos \omega t+b\sin \omega t\end {equation*}


           𝑚    𝑥  𝑃  ″   +  𝑘    𝑥  𝑃   =  (  −  𝑚  𝑎    𝜔  2   +  𝑘  𝑎  )   cos     𝜔  𝑡  +  (  −  𝑚  𝑏    𝜔  2   +  𝑘  𝑏  )   sin     𝜔  𝑡  =    𝐹  0      cos     𝜔  𝑡            ⟹    𝑎  =      𝐹  0     𝑘  −  𝑚    𝜔  2     =      𝐹  0     𝑚  (    𝜔  0  2   −    𝜔  2   )    ,    𝑏  =  0    


\begin {gather*}mx_P''+kx_P=(-ma\omega ^2+ka)\cos \omega t+(-mb\omega ^2+kb)\sin \omega t =F_0\cos \omega t\\ \implies a=\frac {F_0}{k-m\omega ^2}=\frac {F_0}{m(\omega _0^2-\omega ^2)},\quad b=0\end {gather*}


           𝑥  (  𝑡  )  =    𝑥  𝑃   (  𝑡  )  +    𝑥  𝐶   (  𝑡  )  =      𝐹  0     𝑚  (    𝜔  0  2   −    𝜔  2   )       cos     𝜔  𝑡  +    𝑐  1      cos       𝜔  0   𝑡  +    𝑐  2      sin       𝜔  0   𝑡    


\begin {equation*}x(t)=x_P(t)+x_C(t) =\frac {F_0}{m(\omega _0^2-\omega ^2)}\cos \omega t+ c_1\cos \omega _0t+c_2\sin \omega _0t\end {equation*}


     𝐹  0  


$F_0$


   𝜔 


$\omega $


     𝜔  0  


$\omega _0$


   𝑥  (  0  )  =  0  =    𝑥  ′   (  0  ) 


$x(0)=0=x'(0)$


           𝑥  (  𝑡  )  =      𝐹  0     𝑚  (    𝜔  0  2   −    𝜔  2   )    (   cos     𝜔  𝑡  −   cos       𝜔  0   𝑡  )  =      2    𝐹  0      𝑚  (    𝜔  0  2   −    𝜔  2   )       sin           𝜔  0   −  𝜔   2   𝑡     sin           𝜔  0   +  𝜔   2   𝑡    


\begin {equation*}x(t) =\frac {F_0}{m(\omega _0^2-\omega ^2)}\bigl (\cos \omega t-\cos \omega _0t\bigr ) =\frac {2F_0}{m(\omega _0^2-\omega ^2)}\sin \frac {\omega _0-\omega }2t\sin \frac {\omega _0+\omega }2t\end {equation*}


     𝜔  0   ,  𝜔 


$\omega _0,\omega $


     𝜔  0   −  𝜔  ≪    𝜔  0   +  𝜔 


$\omega _0-\omega \ll \omega _0+\omega $


         𝜔  0   +  𝜔     4  𝜋   


$\frac {\omega _0+\omega }{4\pi }$


       |    𝜔  0   −  𝜔  |     4  𝜋   


$\frac {\nm {\omega _0-\omega }}{4\pi }$


     𝑥  ″   +   400   𝑥  =   38      cos      18   𝑡 


$x''+400x=38\cos 18t$


     𝜔  0   =     400    =   20  


$\omega _0=\sqrt {400}=20$


   𝜔  =   18  


$\omega =18$


$x(0)=0=x'(0)$


   𝑥  (  𝑡  )  =   sin     𝑡     sin      19   𝑡  =  𝐴  (  𝑡  )   sin      19   𝑡 


$\textcolor {blue}{x(t)=\sin t\sin 19t=A(t)\sin 19t}$


    sin      19   𝑡 


$\sin 19t$


   𝐴  (  𝑡  )  =   sin     𝑡 


$A(t)=\sin t$


   𝑥  (  𝑡  ) 


$x(t)$


   𝜔  =    𝜔  0  


$\omega =\omega _0$


$\omega $


$\omega _0$


   𝑡 


$t$


             𝑥  𝑃   (  𝑡  )  =  𝑎  𝑡     cos       𝜔  0   𝑡  +  𝑏  𝑡     sin       𝜔  0   𝑡    


\begin {equation*}x_P(t)=at\cos \omega _0t+bt\sin \omega _0t\end {equation*}


   𝑎  ,  𝑏 


$a,b$


           𝑥  (  𝑡  )  =    𝑥  𝑃   (  𝑡  )  +    𝑥  𝐶   (  𝑡  )  =      𝐹  0     2  𝑚    𝜔  0     𝑡     sin       𝜔  0   𝑡  +    𝑐  1      cos     𝜔  𝑡  +    𝑐  2      sin       𝜔  0   𝑡    


\begin {equation*}x(t)=x_P(t)+x_C(t) =\frac {F_0}{2m\omega _0}t\sin \omega _0t +c_1\cos \omega t+c_2\sin \omega _0t\end {equation*}


$x_P(t)$


$x(0)=0=x'(0)$


$x_P(t)$


       𝐹  0     2  𝑚    𝜔  0     𝑡 


$\frac {F_0}{2m\omega _0}t$


      lim     𝜔  →    𝜔  0         𝑥  𝑃   (  𝑡  ) 


$\lim \limits _{\omega \to \omega _0}x_P(t)$


     𝑥  ″   +   16   𝑥  =   cos     𝜔  𝑡 


$x''+16x=\cos \omega t$


   𝑥  (  0  )  =    𝑥  ′   (  0  )  =  0 


$x(0)=x'(0)=0$


     𝜔  0   =  4 


$\omega _0=4$


$\omega $


$\omega $


   𝜔  =   20  


$\omega =20$


   𝑥  (  𝑡  )  =    1   192       sin     8  𝑡     sin      12   𝑡 


$x(t)=\frac 1{192}\sin 8t\sin 12t$


   𝜔  =  6 


$\omega =6$


   𝑥  (  𝑡  )  =    1   10       sin     𝑡     sin     5  𝑡 


$x(t)=\frac 1{10}\sin t\sin 5t$


   𝜔  =  5 


$\omega =5$


   𝑥  (  𝑡  )  =    2  9      sin       𝑡  2      sin       9  2   𝑡 


$x(t)=\frac 29\sin \frac t2\sin \frac 92t$


   𝜔  =  4 


$\omega =4$


   𝑥  (  𝑡  )  =    1  8   𝑡     sin     4  𝑡 


$x(t)=\frac 18t\sin 4t$


$mx''+kx=F_0\cos \omega t$


$x(0)=0=x'(0)$


           𝑥  (  𝑡  )  =    {                2    𝐹  0      𝑚  (    𝜔  0  2   −    𝜔  2   )       sin           𝜔  0   −  𝜔   2   𝑡     sin           𝜔  0   +  𝜔   2   𝑡           if    𝜔  ≠    𝜔  0             𝐹  0     2  𝑚    𝜔  0     𝑡     sin       𝜔  0   𝑡           if    𝜔  =    𝜔  0              


\begin {equation*}x(t)= \begin {cases} \frac {2F_0}{m(\omega ^2_0-\omega ^2)}\sin \frac {\omega _0-\omega }2t\sin \frac {\omega _0+\omega }2t &\text {if }\omega \neq \omega _0\\ \frac {F_0}{2m\omega _0}t\sin \omega _0t &\text {if }\omega =\omega _0 \end {cases}\end {equation*}


$\omega _0=\sqrt {\frac km}$


   𝜔  →    𝜔  0  


$\omega \to \omega _0$


   𝑐  >  0 


$c>0$


           𝑚    𝑥  ″   +  𝑐    𝑥  ′   +  𝑘  𝑥  =    𝐹  0      cos     𝜔  𝑡    ⟹      𝑥  ″   +  2  𝑝    𝑥  ′   +    𝜔  0  2   𝑥  =      𝐹  0   𝑚      cos     𝜔  𝑡                   Damping type       Condition       Complementary Function       𝑥  𝐶   (  𝑡  )           Over-damping        𝑐  2   >  4  𝑘  𝑚         𝑒    −  𝑝  𝑡        (    𝑐  1     𝑒    −        𝑝  2   −    𝜔  0  2     𝑡    +    𝑐  2     𝑒          𝑝  2   −    𝜔  0  2     𝑡    )           Critical damping        𝑐  2   =  4  𝑘  𝑚       (    𝑐  1   +    𝑐  2   𝑡  )    𝑒    −  𝑝  𝑡            Under-damping        𝑐  2   <  4  𝑘  𝑚         𝑒    −  𝑝  𝑡    (    𝑐  1      cos       𝜔  1   𝑡  +    𝑐  2      sin       𝜔  1   𝑡  )    where      𝜔  1   =        𝜔  0  2   −    𝑝  2             


\begin {gather*}mx''+cx'+kx=F_0\cos \omega t \implies x''+2px'+\omega _0^2x=\frac {F_0}m\cos \omega t\\[0.2cm] \begin {array}{@{}l|l|l} \text {Damping type}&\text {Condition}&\text {Complementary Function $x_C(t)$}\\[0.2cm]\hline \text {Over-damping}&c^2>4km&\displaystyle e^{-pt}\left (c_1e^{-\sqrt {p^2-\omega _0^2}t}+c_2e^{\sqrt {p^2-\omega _0^2}t}\right )\\[0.2cm] \text {Critical damping}&c^2=4km&\displaystyle (c_1+c_2t)e^{-pt}\\[0.2cm] \text {Under-damping}&c^2<4km&\displaystyle e^{-pt}\bigl (c_1\cos \omega _1t +c_2\sin \omega _1t\bigr )\text { where }\omega _1=\sqrt {\omega _0^2-p^2} \end {array}\end {gather*}


   𝑝  =    𝑐    2  𝑚    >  0  ⟹    𝑥  𝐶  


$p=\frac c{2m}>0\Longrightarrow x_C$


      lim     𝑡  →  ∞        𝑥  𝐶   (  𝑡  )  =  0 


$\lim \limits _{t\to \infty }x_C(t)=0$


$t$


   𝑥  (  𝑡  )  ≈    𝑥  𝑃   (  𝑡  )  =  𝑎     cos     𝜔  𝑡  +  𝑏     sin     𝜔  𝑡 


$x(t)\approx x_P(t)=a\cos \omega t+b\sin \omega t$


     𝑥  ″   +  2    𝑥  ′   +  6  𝑥  =   cos     𝜔  𝑡 


$x''+2x'+6x=\cos \omega t$


     𝑥  𝑃   (  𝑡  )  =  𝑎     cos     𝜔  𝑡  +  𝑏     sin     𝜔  𝑡 


$x_P(t)=a\cos \omega t+b\sin \omega t$


           (  −  𝑎    𝜔  2   +  2  𝑏  𝜔  +  6  𝑎  )   cos     𝜔  𝑡  +  (  −  𝑏    𝜔  2   −  2  𝑎  𝜔  +  6  𝑏  )   sin     𝜔  𝑡  =   cos     𝜔  𝑡    


\begin {equation*}(-a\omega ^2+2b\omega +6a)\cos \omega t+(-b\omega ^2-2a\omega +6b)\sin \omega t=\cos \omega t\end {equation*}


   𝑎 


$a$


   𝑏 


$b$


             𝑥  𝑃   (  𝑡  )     =    1    (    𝜔  2   −  6    )  2   +  4    𝜔  2         (  (    𝜔  2   −  6  )   cos     𝜔  𝑡  +  4  𝜔     sin     𝜔  𝑡  )             =    1      (    𝜔  2   −  6    )  2   +  4    𝜔  2         cos       (  𝜔  𝑡  −  𝛾  )             =    1      (    𝜔  2   −  4    )  2   +   20         cos       (  𝜔  𝑡  −  𝛾  )     


\begin {align*}x_P(t) &=\frac 1{(\omega ^2-6)^2+4\omega ^2}\left ((\omega ^2-6)\cos \omega t+4\omega \sin \omega t\right )\\ &=\frac 1{\sqrt {(\omega ^2-6)^2+4\omega ^2}}\cos \left (\omega t-\gamma \right )\\ &=\frac 1{\sqrt {(\omega ^2-4)^2+20}}\cos \left (\omega t-\gamma \right )\end {align*}


     𝑥  𝑃   (  𝑡  )  =      1    3    5        cos     3  𝑡  


$x_P(t)=\textcolor {blue}{\frac 1{3\sqrt 5}\cos 3t}$


     1    2    5        cos     2  𝑡 


$\textcolor {Green}{\frac 1{2\sqrt 5}\cos 2t}$


   𝛾 


$\gamma $


$\omega $


   𝜔  =  3 


$\textcolor {blue}{\omega =3}$


   𝜔  =  2 


$\textcolor {Green}{\omega =2}$


             𝑥  𝑃   (  𝑡  )     =      𝐹  0     𝑚      (    𝜔  2   −    𝜔  0  2     )  2   +  4    𝑝  2     𝜔  2          cos   (  𝜔  𝑡  −  𝛾  )    


\begin {align*}x_P(t) &=\frac {F_0}{m\sqrt {(\omega ^2-\omega _0^2)^2+4p^2\omega ^2}}\cos (\omega t-\gamma )\end {align*}


$\omega $


$F_0$


           𝜔  =    {                  𝜔  0  2   −  2    𝑝  2              if    2    𝑝  2   <    𝜔  0  2     (   equivalently      𝑐  2   <  2  𝑘  𝑚  )        0           if    2    𝑝  2   ≥    𝜔  0  2     (    𝑐  2   ≥  2  𝑘  𝑚  )             


\begin {equation*}\omega = \begin {cases} \sqrt {\omega _0^2-2p^2} &\text {if }2p^2<\omega _0^2 \quad (\text {equivalently } c^2<2km)\\ 0&\text {if }2p^2\ge \omega _0^2 \quad (c^2\ge 2km) \end {cases}\end {equation*}


   𝜔  =        𝜔  0  2   −  2    𝑝  2    


$\omega =\sqrt {\omega _0^2-2p^2}$


               1   10       𝑥  ″   +      1  5      𝑥  ′   +  1  ,   000   ,   000   𝑥  =    𝐹  0      cos     𝜔  𝑡    


\begin {equation*}\tfrac 1{10}x''+\tfrac 15x'+1,000,000x=F_0\cos \omega t\end {equation*}


$F_0\cos \omega t$


             𝑥  𝐶   (  𝑡  )  =    𝑒    −  𝑡    (    𝑐  1      cos       𝜔  1   𝑡  +    𝑐  2      sin       𝜔  1   𝑡  )    


\begin {equation*}x_C(t)=e^{-t}(c_1\cos \omega _1t+c_2\sin \omega _1t)\end {equation*}


               𝜔  1     2  𝜋    =      𝜔  1     2  𝜋          𝜔  0  2   −    𝑝  2     =      𝜔  1     2  𝜋            𝑘  𝑚    −        𝑐  2     4    𝑚  2        =   503   .   2920959      Hz     


\begin {equation*}\frac {\omega _1}{2\pi } =\frac {\omega _1}{2\pi }\sqrt {\omega _0^2-p^2} =\frac {\omega _1}{2\pi }\sqrt {\tfrac km-\tfrac {c^2}{4m^2}} =503.2920959\,\text {Hz}\end {equation*}


   ≈ 


$\approx $


   𝑓  =    𝜔    2  𝜋   


$f=\frac \omega {2\pi }$


           𝑓  =    𝜔    2  𝜋    =    1    2  𝜋          𝜔  0  2   −  2    𝑝  2     =   503   .   2920707      Hz     


\begin {equation*}f=\frac \omega {2\pi } =\frac 1{2\pi }\sqrt {\omega ^2_0-2p^2} =503.2920707\,\text {Hz}\end {equation*}


   𝑉  (  𝑡  )  =   110     2      sin   (   120   𝜋  𝑡  ) 


$V(t)=110\sqrt 2\sin (120\pi t)$


   𝑉  (  𝑡  )  =    𝑉  0      sin     𝜔  𝑡 


$V(t)=V_0\sin \omega t$


   𝑅 


$R$


   𝐶 


$C$


   𝐿 


$L$


   𝐼  =      d  𝑄     d  𝑡   


$I=\diff [Q]{t}$


   𝑄 


$Q$


$t$


           𝐿      d  𝐼     d  𝑡    +  𝑅  𝐼  +    1  𝐶   𝑄  =  𝑉  (  𝑡  )    ⟹    𝐿        d  2   𝐼     d    𝑡  2     +  𝑅      d  𝐼     d  𝑡    +    1  𝐶   𝐼  =    𝑉  ′   (  𝑡  )    


\begin {equation*}L\diff [I]{t}+RI+\frac 1CQ=V(t)\implies L\diff [^2I]{t^2}+R\diff [I]{t}+\frac 1CI=V'(t)\end {equation*}


   (  𝑚  ,  𝑐  ,  𝑘  ,    𝐹  0   )  ⟷  (  𝐿  ,  𝑅  ,    𝐶    −  1    ,  𝜔    𝑉  0   ) 


$(m,c,k,F_0)\longleftrightarrow (L,R,C^{-1},\omega V_0)$


           𝐼  =      𝑉  0         𝑅  2   +      (  𝜔  𝐿  −    1    𝜔  𝐶    )   2        


\begin {equation*}I=\frac {V_0}{\sqrt {R^2+\left (\omega L-\frac 1{\omega C}\right )^2}}\end {equation*}


     𝜔  2   𝐿  𝐶  =  1 


$\omega ^2LC=1$


$C$


     𝜔    −  2      𝐿    −  1   


$\omega ^{-2}L^{-1}$


   𝐶  =  0 


$C=0$


   𝐼  (  𝑡  )  =      𝑉  0         𝑅  2   +    𝜔  2     𝐿  2         cos   (  𝜔  𝑡  −  𝛾  ) 


$I(t)=\frac {V_0}{\sqrt {R^2+\omega ^2L^2}}\cos (\omega t-\gamma )$


   𝐶  =    𝜔    −  2      𝐿    −  1   


$C=\omega ^{-2}L^{-1}$


   𝐼  =    𝑉  0   /  𝑅 


$I=V_0/R$


$\omega $


$V(t)=V_0\sin \omega t$


$C=\omega ^{-2}L^{-1}$


$\omega $

http://www.youtube.com/watch?v=Jy8js2FmGiY
http://en.wikipedia.org/wiki/File:RLC_series_circuit.png

Audio Hum Background noise is often related to an electrically resonant current. Hum can be reduced
by adjusting the capacitance C to be very different to w=2L~!.

Vo
VR2 + @22
(alternating) current flow, acting like extra resistance. By inserting a capacitor C = w=2L~! into
the circuit, the current flow increases to what one would expect (I = V;/R) thus reducing power
loss from natural inductancel’|

Reducing power loss If C = 0, the current flow is I(t) = cos(wt — ). An inductor reduces

Tuning an (AM) radio A radio station broadcasting at frequency w induces a voltage V () = V sin wt
in a radio antenna, resulting in a current flow which (after amplification) powers a loudspeaker.

An old AM radio dial is a variable capacitor. By tuning it to C = w™2L~!, the signal with
frequency w is amplified, and current flows induced by other radio frequencies are diminished.

3As an electrical component, an inductor is often just a tight coil of wire: with lots of wiring, large electrical systems can
easily form natural inductors!





