Mechanical Vibrations (Section 2.4)

This section contains lots of Physics language and notation. Don’t try to memorize everything. Beyond
basic modeling, treat questions on this material as open-book.

A mass m (kg) is attached to a spring. x(t) measures distance (m) to the right of the equilibrium point
at time t (s). A spring force Fs acts on the mass: provided the extension of the spring is small relative
the size of the spring, experiments suggest that Fg = —kx is a constant multiple of the extension: k > 0
is the spring constant (N/m).
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Equilibrium: x = 0,Fg =0 Extended: x > 0, F5 <0 Compressed: x < 0, Fg > 0
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Two other forces might act on the mass.

1. Fg = resistive force. For simplicity, this is often modeled as Fg = —cx’ where ¢ > 0 is constant
(Ns/m=kg/s). In reality, this isn’t a very accurate model for friction/resistance, particularly
when the mass is moving quickly.

2. Fg = F(t), some time-dependent external force.

Newton’s second law provides a a constant coefficient second-order linear ODE: F = mx"” = Fg+Fgr+Fg
simplifies to the spring equation

mx" + cx' + kx = F(t)

The motion of the mass/spring system is described as:
¢ Forced if F(t) # 0, and unforced or free if F(t) = 0. In this section, all motion will be unforced.
¢ Damped if c > 0, and undamped if ¢ = 0 (c < 0 is unphysical).

This equation has other physical applications. For instance:

1. Applying Newton’s second law to the angular component of gravity,
we see that the motion of a pendulum satisfies the non-linear ODE

mlf” = Fr = —mgsin @

where g is the gravitational constant, and [ is the length of the pendu-
lum. If 6 is small, then sin 8 ~ 6 and we obtain 6" + ‘%9 =0.

2. The current I(t) flowing in an RLC circuit (resistor, inductor, capacitor)
may be modeled by the equation LI’ + RI + % f Idt = V(t), where V (t)

is the applied voltage. Differentiate this to obtain LI"” +RI’ + %I = V().




Free undamped motion (F(t) = 0,¢ =0, mx" + kx = 0)

The characteristic equation mA? + k = 0 has complex roots A = ii\/g = 4iwy where wj = \/g (rad/s)
is the circular frequency. The general solution

x(t) = Acos wyt + Bsinwyt = C cos(wot — )

is simple harmonic motion with amplitude C = Y A2 + B2 (m) and phase angle v = tan™? %(+7‘[) (rad). The
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motion is periodic, with period T = 75 (s) and frequency f = 5. (Hz=5s7")

Examples 1. Supposek = 8 N/mand m = 2 kg, and that the spring is set in motion with an extension

of x(0) = 1 m and initial speed x'(0) = —2\/5 m/s. x 2
The general solution is x(t) = A cos 2t + Bsin2t. Apply the 1 /\ /\
initial conditions to obtain 0 : | : >
x(t) = cos2t — y/3sin2t = 2 cos(2t + %) —17 \/ nv 27
_2 —

2. (Ex2.4.4 from book.) A spring has k = 4 N/m. Suppose a mass is attached the the spring and
set in motion. If the observed frequency is 0.8 Hz, find the mass.
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Since f = 5= = %\/ %, we see that
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Free damped motion (F(t) = 0,c > 0, mx" + cx’ + kz = 0)

The equation may be re-written
x" +2px’ + wix =0

where wy = \/g is the undamped circular frequency and p = ﬁ > 0. The characteristic equation is
easily solved:

A +2pA + WG =0=> 11,10 = —p + \p? — W}
There are three cases, dependent on the sign of the expression p? — wj in the square-root.

1. Over-damping: p?> — w3 > 0. The damping force Fr = —cx’ is large compared to the spring
stiffness/mass (cZ > 4km).

Since p > 0, both roots r{, 7, are real and negative. The general solution is
x(t) = cqe"t + cye’2t

Regardless of the initial conditions, the motion of the spring dies away with time: tlim x(t) = 0.

2



2. Critical damping: p? — w3 = 0. Damping exactly balances the spring stiffness/mass (c? = 4km).

The repeated root r; = r, = —p is real and negative. The general solution is
x(t) = (c1 + cot)e P!
Again, the motion of the spring dies away with time: tlirgo x(t) =0.
3. Under-damping: p*> — w3 < 0. Damping is small compared to the stiffness/mass (¢ < 4km).

The complex roots 11,7y = —p + iyJw3 — p?> = —p + iw;y have

negative real part. The general solution is . t
==
x(t) = e Pt (A cos wyt + Bsin wyt) b -
= Ce Pt cos(wqt — ) A\/ N~
[ t

where C = VA2 + B2 and 7 is the phase angle. Solutions o
oscillate as they diminish to zero, but the modified frequency ,
w1 is smaller than the natural frequency wy of the equivalent /

undamped spring.

Suspension Examples

Vehicle suspensions may be modeled by these equations: in each example below, m = 1 models the
vehicle’s mass, k is supplied by the spring and c comes from the hydraulic dampers. Tuning the
suspension of a vehicle means altering k and c.

Tractors and Semi-trucks are usually under-damped: c and k are  x c=4 k=20
small, and ¢? < 4km for a slow, relaxed response. This is ideal for
. . : Underdamped
traveling over rough ground or to not risk damaging cargo.
~___I— |
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Sports car suspensions are typically closer to critical damping: ¢ = x c =150 k = 5625
and k are very large, and c? ~ 4km for a fast, stiff ride. Sports cars Criticallv d d
ride low to the ground for aerodynamics and so cannot bounce riically campe
around. Tires also need to quickly be forced back to the road after : |
going over a bump lest the vehicle lose grip and crash. 1 )
t
Family sedans are often slightly under-damped: c and k are moder-  x c=24 k=250
ate, with ¢2 < 4km for smooth but not bouncy response. Prefer- Underd q
ences have changed over time: look at a 1960s movie car chase to nderdampe
see how much bouncier normal cars were in the past! : |
1 2
t

For a given vehicle, increasing k|results in a faster response, but the ride becomes more bouncy and
shaky. Increasing ¢ produces a slower response, and a softer, smoother ride.


https://www.math.uci.edu/~ndonalds/math3d/springs/springs.html
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