
Mechanical Vibrations (Section 2.4)

This section contains lots of Physics language and notation. Don’t try to memorize everything. Beyond 
basic modeling, treat questions on this material as open-book.

A mass 𝑚 (kg) is attached to a spring. 𝑥(𝑡) measures distance (m) to the right of the equilibrium point 
at time 𝑡 (s). A spring force 𝐹𝑆 acts on the mass: provided the extension of the spring is small relative 
the size of the spring, experiments suggest that 𝐹𝑆 = −𝑘𝑥 is a constant multiple of the extension: 𝑘 > 0
is the spring constant (N/m).
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 Equilibrium: 𝑥 = 0, 𝐹𝑆 = 0  Extended: 𝑥 > 0, 𝐹𝑆 < 0  Compressed: 𝑥 < 0, 𝐹𝑆 > 0

Two other forces might act on the mass.

1. 𝐹𝑅 = resistive force. For simplicity, this is often modeled as 𝐹𝑅 = −𝑐𝑥′ where 𝑐 > 0 is constant 
(Ns/m=kg/s). In reality, this isn’t a very accurate model for friction/resistance, particularly 
when the mass is moving quickly.

2. 𝐹𝐸 = 𝐹(𝑡), some time-dependent external force.

Newton’s second law provides a a constant coefficient second-order linear ODE: 𝐹 = 𝑚𝑥″ = 𝐹𝑆+𝐹𝑅+𝐹𝐸
simplifies to the spring equation

𝑚𝑥″ + 𝑐𝑥′ + 𝑘𝑥 = 𝐹(𝑡)

The motion of the mass/spring system is described as:

• Forced if 𝐹(𝑡) ≢ 0, and unforced or free if 𝐹(𝑡) ≡ 0. In this section, all motion will be unforced.

• Damped if 𝑐 > 0, and undamped if 𝑐 = 0 (𝑐 < 0 is unphysical).

This equation has other physical applications. For instance:

1. Applying Newton’s second law to the angular component of gravity, 
we see that the motion of a pendulum satisfies the non-linear ODE

𝑚ℓ𝜃″ = 𝐹𝑇 = −𝑚𝑔 sin 𝜃

where 𝑔 is the gravitational constant, and 𝑙 is the length of the pendu­
lum. If 𝜃 is small, then sin 𝜃 ≈ 𝜃 and we obtain 𝜃″ + 𝑔

𝑙 𝜃 = 0.

2. The current 𝐼(𝑡) flowing in an RLC circuit (resistor, inductor, capacitor) 
may be modeled by the equation 𝐿𝐼′ +𝑅𝐼 + 1

𝐶 ∫ 𝐼 d𝑡 = 𝑉(𝑡), where 𝑉(𝑡)
is the applied voltage. Differentiate this to obtain 𝐿𝐼″+𝑅𝐼′+ 1

𝐶 𝐼 = 𝑉′(𝑡).
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Free undamped motion (𝐹(𝑡) = 0, 𝑐 = 0, 𝑚𝑥″ + 𝑘𝑥 = 0)

The characteristic equation 𝑚𝜆2 + 𝑘 = 0 has complex roots 𝜆 = ±𝑖√ 𝑘
𝑚 = ±𝑖𝜔0 where 𝜔0 = √ 𝑘

𝑚  (rad/s) 
is the circular frequency. The general solution

𝑥(𝑡) = 𝐴 cos 𝜔0𝑡 + 𝐵 sin 𝜔0𝑡 = 𝐶 cos(𝜔0𝑡 − 𝛾)

is simple harmonic motion with amplitude 𝐶 = √𝐴2 + 𝐵2 (m) and phase angle 𝛾 = tan−1 𝐵
𝐴(+𝜋) (rad). The 

motion is periodic, with period 𝑇 = 2𝜋
𝜔0

 (s) and frequency 𝑓 = 𝜔0
2𝜋  (Hz = s−1)

Examples 1. Suppose 𝑘 = 8 N/m and 𝑚 = 2 kg, and that the spring is set in motion with an extension 
of 𝑥(0) = 1 m and initial speed 𝑥′(0) = −2√3 m/s.

The general solution is 𝑥(𝑡) = 𝐴 cos 2𝑡 + 𝐵 sin 2𝑡. Apply the 
initial conditions to obtain

𝑥(𝑡) = cos 2𝑡 − √3 sin 2𝑡 = 2 cos(2𝑡 + 𝜋
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2. (Ex 2.4.4 from book.) A spring has 𝑘 = 4 N/m. Suppose a mass is attached the the spring and 
set in motion. If the observed frequency is 0.8 Hz, find the mass.

Since 𝑓 = 𝜔0
2𝜋 = 1

2𝜋
√ 𝑘

𝑚 , we see that

𝑚 =
𝑘

4𝜋2𝑓 2 = (
5

4𝜋 )
2

≈ 0.158 kg

Free damped motion (𝐹(𝑡) = 0, 𝑐 > 0, 𝑚𝑥″ + 𝑐𝑥′ + 𝑘𝑧 = 0)

The equation may be re-written

𝑥″ + 2𝑝𝑥′ + 𝜔2
0𝑥 = 0

where 𝜔0 = √ 𝑘
𝑚  is the undamped circular frequency and 𝑝 = 𝑐

2𝑚 > 0. The characteristic equation is 
easily solved:

𝜆2 + 2𝑝𝜆 + 𝜔2
0 = 0 ⟹ 𝑟1, 𝑟2 = −𝑝 ± √𝑝2 − 𝜔2

0

There are three cases, dependent on the sign of the expression 𝑝2 − 𝜔2
0 in the square-root.

1. Over-damping: 𝑝2 − 𝜔2
0 > 0. The damping force 𝐹𝑅 = −𝑐𝑥′ is large compared to the spring 

stiffness/mass (𝑐2 > 4𝑘𝑚).
Since 𝑝 > 0, both roots 𝑟1, 𝑟2 are real and negative. The general solution is

𝑥(𝑡) = 𝑐1𝑒𝑟1𝑡 + 𝑐2𝑒𝑟2𝑡

Regardless of the initial conditions, the motion of the spring dies away with time: lim
𝑡→∞

𝑥(𝑡) = 0.
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2. Critical damping: 𝑝2 − 𝜔2
0 = 0. Damping exactly balances the spring stiffness/mass (𝑐2 = 4𝑘𝑚).

The repeated root 𝑟1 = 𝑟2 = −𝑝 is real and negative. The general solution is

𝑥(𝑡) = (𝑐1 + 𝑐2𝑡)𝑒−𝑝𝑡

Again, the motion of the spring dies away with time: lim
𝑡→∞

𝑥(𝑡) = 0.

3. Under-damping: 𝑝2 − 𝜔2
0 < 0. Damping is small compared to the stiffness/mass (𝑐2 < 4𝑘𝑚).

The complex roots 𝑟1, 𝑟2 = −𝑝 ± 𝑖√𝜔2
0 − 𝑝2 = −𝑝 ± 𝑖𝜔1 have 

negative real part. The general solution is

𝑥(𝑡) = 𝑒−𝑝𝑡 (𝐴 cos 𝜔1𝑡 + 𝐵 sin 𝜔1𝑡)
= 𝐶𝑒−𝑝𝑡 cos(𝜔1𝑡 − 𝛾)

where 𝐶 = √𝐴2 + 𝐵2 and 𝛾 is the phase angle. Solutions 
oscillate as they diminish to zero, but the modified frequency 
𝜔1 is smaller than the natural frequency 𝜔0 of the equivalent 
undamped spring.
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Suspension Examples

Vehicle suspensions may be modeled by these equations: in each example below, 𝑚 = 1 models the 
vehicle’s mass, 𝑘 is supplied by the spring and 𝑐 comes from the hydraulic dampers. Tuning the 
suspension of a vehicle means altering 𝑘 and 𝑐.

Tractors and Semi-trucks are usually under-damped: 𝑐 and 𝑘 are 
small, and 𝑐2 < 4𝑘𝑚 for a slow, relaxed response. This is ideal for 
traveling over rough ground or to not risk damaging cargo.
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c = 4 k = 20

Underdamped

Sports car suspensions are typically closer to critical damping: 𝑐
and 𝑘 are very large, and 𝑐2 ≈ 4𝑘𝑚 for a fast, stiff ride. Sports cars 
ride low to the ground for aerodynamics and so cannot bounce 
around. Tires also need to quickly be forced back to the road after 
going over a bump lest the vehicle lose grip and crash.
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c = 150 k = 5625

Critically damped

Family sedans are often slightly under-damped: 𝑐 and 𝑘 are moder­
ate, with 𝑐2 < 4𝑘𝑚 for smooth but not bouncy response. Prefer­
ences have changed over time: look at a 1960s movie car chase to 
see how much bouncier normal cars were in the past!
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c = 24 k = 250

Underdamped

For a given vehicle, increasing 𝑘 results in a faster response, but the ride becomes more bouncy and 
shaky. Increasing 𝑐 produces a slower response, and a softer, smoother ride.
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   𝑚 


   𝑥  (  𝑡  ) 


   𝑡 


     𝐹  𝑆  


     𝐹  𝑆   =  −  𝑘  𝑥 


   𝑘  >  0 


   𝑥  =  0  ,    𝐹  𝑆   =  0 


   𝑥  >  0 


     𝐹  𝑆   <  0 


   𝑥  <  0 


     𝐹  𝑆   >  0 


     𝐹  𝑅   = 


     𝐹  𝑅   =  −  𝑐    𝑥  ′  


   𝑐  >  0 


     𝐹  𝐸   =  𝐹  (  𝑡  ) 


   𝐹  =  𝑚    𝑥  ″   =    𝐹  𝑆   +    𝐹  𝑅   +    𝐹  𝐸  


           𝑚    𝑥  ″   +  𝑐    𝑥  ′   +  𝑘  𝑥  =  𝐹  (  𝑡  )    


   𝐹  (  𝑡  )  ≢  0 


   𝐹  (  𝑡  )  ≡  0 


   𝑐  =  0 


   𝑐  <  0 


           𝑚  ℓ    𝜃  ″   =    𝐹  𝑇   =  −  𝑚  𝑔     sin     𝜃    


   𝑔 


   𝑙 


   𝜃 


    sin     𝜃  ≈  𝜃 


     𝜃  ″   +    𝑔  𝑙   𝜃  =  0 


   𝐼  (  𝑡  ) 


   𝐿    𝐼  ′   +  𝑅  𝐼  +    1  𝐶   ∫  𝐼      d  𝑡   =  𝑉  (  𝑡  ) 


   𝑉  (  𝑡  ) 


   𝐿    𝐼  ″   +  𝑅    𝐼  ′   +    1  𝐶   𝐼  =    𝑉  ′   (  𝑡  ) 


   𝐹  (  𝑡  )  =  0 


   𝑚    𝑥  ″   +  𝑘  𝑥  =  0 


   𝑚    𝜆  2   +  𝑘  =  0 


   𝜆  =  ±  𝑖      𝑘  𝑚    =  ±  𝑖    𝜔  0  


     𝜔  0   =      𝑘  𝑚   


           𝑥  (  𝑡  )  =  𝐴     cos       𝜔  0   𝑡  +  𝐵     sin       𝜔  0   𝑡  =  𝐶     cos   (    𝜔  0   𝑡  −  𝛾  )    


   𝐶  =        𝐴  2   +    𝐵  2    


   𝛾  =     tan     −  1        𝐵  𝐴   (  +  𝜋  ) 


   𝑇  =      2  𝜋     𝜔  0   


   𝑓  =      𝜔  0     2  𝜋   


   =    s    −  1   


   𝑘  =  8 


   𝑚  =  2 


   𝑥  (  0  )  =  1 


     𝑥  ′   (  0  )  =  −  2    3  


   𝑥  (  𝑡  )  =  𝐴     cos     2  𝑡  +  𝐵     sin     2  𝑡 


           𝑥  (  𝑡  )  =   cos     2  𝑡  −    3      sin     2  𝑡  =  2     cos   (  2  𝑡  +      𝜋  3    )    


   𝑘  =  4 


   0  .  8 


   𝑓  =      𝜔  0     2  𝜋    =    1    2  𝜋        𝑘  𝑚   


           𝑚  =    𝑘    4    𝜋  2     𝑓  2     =      (    5    4  𝜋    )   2   ≈  0  .   158     kg     


   𝑚    𝑥  ″   +  𝑐    𝑥  ′   +  𝑘  𝑧  =  0 


             𝑥  ″   +  2  𝑝    𝑥  ′   +    𝜔  0  2   𝑥  =  0    


   𝑝  =    𝑐    2  𝑚    >  0 


             𝜆  2   +  2  𝑝  𝜆  +    𝜔  0  2   =  0  ⟹    𝑟  1   ,    𝑟  2   =  −  𝑝  ±        𝑝  2   −    𝜔  0  2       


     𝑝  2   −    𝜔  0  2  


     𝑝  2   −    𝜔  0  2   >  0 


     𝑐  2   >  4  𝑘  𝑚 


   𝑝  >  0 


     𝑟  1   ,    𝑟  2  


           𝑥  (  𝑡  )  =    𝑐  1     𝑒      𝑟  1   𝑡    +    𝑐  2     𝑒      𝑟  2   𝑡      


      lim     𝑡  →  ∞      𝑥  (  𝑡  )  =  0 


     𝑝  2   −    𝜔  0  2   =  0 


     𝑐  2   =  4  𝑘  𝑚 


     𝑟  1   =    𝑟  2   =  −  𝑝 


           𝑥  (  𝑡  )  =  (    𝑐  1   +    𝑐  2   𝑡  )    𝑒    −  𝑝  𝑡      


     𝑝  2   −    𝜔  0  2   <  0 


     𝑐  2   <  4  𝑘  𝑚 


     𝑟  1   ,    𝑟  2   =  −  𝑝  ±  𝑖        𝜔  0  2   −    𝑝  2     =  −  𝑝  ±  𝑖    𝜔  1  


           𝑥  (  𝑡  )     =    𝑒    −  𝑝  𝑡        (  𝐴     cos       𝜔  1   𝑡  +  𝐵     sin       𝜔  1   𝑡  )             =  𝐶    𝑒    −  𝑝  𝑡       cos   (    𝜔  1   𝑡  −  𝛾  )    


   𝛾 


     𝜔  1  


     𝜔  0  


   𝑚  =  1 


   𝑘 


   𝑐 


     𝑐  2   ≈  4  𝑘  𝑚 


$m$


$x(t)$


$t$


$F_S$


$F_S=-kx$


$k>0$


$x=0,F_S=0$


$x>0$


$F_S<0$


$x<0$


$F_S>0$


$F_R=$


$F_R=-cx'$


$c>0$


$F_E=F(t)$


$F=mx''=F_S+F_R+F_E$


\begin {equation*}mx''+cx'+kx=F(t)\end {equation*}


$F(t)\not \equiv 0$


$F(t)\equiv 0$


$c>0$


$c=0$


$c<0$


\begin {equation*}m\ell \theta ''=\textcolor {blue}{F_T}=-mg\sin \theta \end {equation*}


$g$


$l$


$\theta $


$\sin \theta \approx \theta $


$\theta ''+\frac gl\theta =0$


$I(t)$


$LI'+RI+\frac 1C\int I\,\dt =V(t)$


$V(t)$


$LI''+RI'+\frac 1C I=V'(t)$


$F(t)=0$


$c=0$


$mx''+kx=0$


$m\lambda ^2+k=0$


$\lambda =\pm i\sqrt {\frac km}=\pm i\omega _0$


$\omega _0=\sqrt {\frac km}$


\begin {equation*}x(t)=A\cos \omega _0 t+B\sin \omega _0 t=C\cos (\omega _0 t-\gamma )\end {equation*}


$C=\sqrt {A^2+B^2}$


$\gamma =\tan ^{-1}\frac BA(+\pi )$


$T=\frac {2\pi }{\omega _0}$


$f=\frac {\omega _0}{2\pi }$


$=\text {s}^{-1}$


$k=8$


$m=2$


$x(0)=1$


$x'(0)=-2\sqrt 3$


$x(t)=A\cos 2t+B\sin 2t$


\begin {equation*}x(t)=\cos 2t-\sqrt 3\sin 2t=2\cos (2t+\tfrac \pi 3)\end {equation*}


$k=4$


$0.8$


$f=\frac {\omega _0}{2\pi }=\frac 1{2\pi }\sqrt {\frac km}$


\begin {equation*}m=\frac {k}{4\pi ^2 f^2}=\left (\frac {5}{4\pi }\right )^2\approx 0.158 \text { kg}\end {equation*}


$F(t)=0$


$c>0$


$mx''+cx'+kz=0$


\begin {equation*}x''+2px'+\omega _0^2x=0\end {equation*}


$\omega _0=\sqrt {\frac km}$


$p=\frac c{2m}>0$


\begin {equation*}\lambda ^2+2p\lambda +\omega ^2_0=0\Longrightarrow r_1,r_2=-p\pm \sqrt {p^2-\omega ^2_0}\end {equation*}


$p^2-\omega ^2_0$


$p^2-\omega ^2_0>0$


$F_R=-cx'$


$c^2>4km$


$p>0$


$r_1,r_2$


\begin {equation*}x(t)=c_1e^{r_1t}+c_2e^{r_2t}\end {equation*}


$\lim \limits _{t\to \infty }x(t)=0$


$p^2-\omega ^2_0=0$


$c^2=4km$


$r_1=r_2=-p$


\begin {equation*}x(t)=(c_1+c_2t)e^{-pt}\end {equation*}


$\lim \limits _{t\to \infty }x(t)=0$


$p^2-\omega ^2_0<0$


$c^2<4km$


$r_1,r_2=-p\pm i\sqrt {\omega _0^2-p^2}=-p\pm i\omega _1$


\begin {align*}x(t) &=e^{-pt}\left (A\cos \omega _1t +B\sin \omega _1t\right )\\ &=Ce^{-pt}\cos (\omega _1t-\gamma )\end {align*}


$C=\sqrt {A^2+B^2}$


$\gamma $


$\omega _1$


$\omega _0$


$m=1$


$k$


$c$


$k$


$c$


$c$


$k$


$c^2<4km$


$c$


$k$


$c^2\approx 4km$


$c$


$k$


$c^2<4km$


$k$


$c$



