Math 4: Mathematics for Economists

Total 50 marks: marks per question are in brackets. You must show working for calculations, merely stating the answer will get you no marks

1. Calculate the determinant of the matrix

$$
A=\left(\begin{array}{ccc}
4 & 2 & 3 \tag{5}\\
3 & -6 & 15 \\
1 & 1 & -1
\end{array}\right)
$$

Hence or otherwise, calculate the determinant of the matrix $\frac{1}{3} A$.
2. Consider the following system of equations

$$
\left\{\begin{aligned}
x+2 y+z & =3 \\
-2 x+y-4 z & =3 \\
3 x-2 y & =7
\end{aligned}\right.
$$

Find the Reduced Row Echelon form of the augmented matrix of the system and use it to calculate the solutions to the system.
3. Let A, B be $n \times n$ matrices. Is it true that

$$
\begin{equation*}
(A-2 B)^{2}=A^{2}-4 A B+4 B^{2} ? \tag{4}
\end{equation*}
$$

If not, what should the right hand side be?
4. Use Cramer's rule to calculate x if

$$
\left\{\begin{align*}
7 x+8 y+6 z+9 w & =1 \tag{6}\\
3 y+3 z+3 w & =0 \\
2 z+2 w & =0 \\
4 w & =0
\end{align*}\right.
$$

5. Suppose that the markets for tea, coffee and sugar are described by the supply and demand functions

$$
\begin{array}{ll}
D_{t}=90-3 p_{t}+2 p_{c}-p_{s}, & S_{t}=-6+p_{t} \\
D_{c}=88+2 p_{t}-3 p_{c}-p_{s}, & S_{c}=-8+p_{c} \\
D_{s}=36+p_{t}+p_{c}-p_{s}, & S_{s}=-12+2 p_{s},
\end{array}
$$

where D_{t}, D_{c}, D_{s} are, respectively, the demanded quantities of tea, coffee and sugar, S_{t}, S_{c}, S_{s} the supplied quantities, and p_{t}, p_{c}, p_{s} the prices.
(a) Show that the vector of equilibrium prices satisfies the matrix equation

$$
\left(\begin{array}{ccc}
4 & -2 & 1 \tag{5}\\
-2 & 4 & 1 \\
-1 & -1 & 3
\end{array}\right)\left(\begin{array}{l}
p_{t} \\
p_{c} \\
p_{s}
\end{array}\right)=\left(\begin{array}{c}
96 \\
96 \\
48
\end{array}\right)
$$

(b) Calculate the equilibrium prices and quantities of tea, coffee and sugar.
6. Consider the matrix $A=\left(\begin{array}{cc}-2 & 2 \\ 2 & 1\end{array}\right)$.
(a) Calculate the eigenvalues and eigenvectors of A.
(b) Find a matrix X and a diagonal matrix D such that $A=X D X^{-1}$.
7. Consider the quadratic form $g(\mathbf{x})=3 x^{2}+2 y^{2}+2 z^{2}+2 x y-4 x z$. Show that g is positive definite.

