
Math 4 - Summary Notes

July 12, 2011

Chat: what is class about? Mathematics of Economics, NOT Economics! Lecturer NOT Economist
- have some training, but reluctant to discuss strict economic models because much of my knowledge
comes from non-standard places (actuarial exams, etc). In particular, the IS-LM model in 1st section of
is NOT examinable and will only be covered lightly here. If you know about these things from other
places, do the questions as they’ll help! The first part of the class is Linear Algebra. It gets everywhere
and is probably the most applicable area of undergrad math. Depending on yr background it can be
applied to traffic networks, cell division models, physical motion, engineering problems, etc., etc.
Why so useful? Primarily cos so easy (relatively). Linear problems can mostly be solved exactly
using algorithms. Non-linear problems often cannot. Sacrifice correctness in the model for easy of
solution. ‘Best fitting straight line’, etc. Easier then complex curve. Suppose have supply-demand
model with two curves (quantity =f(price)) qs = f (p), qd = g(p) (f monotone down, g monotone up).
Equilibrium price/quantity given where curves meet. Hard to find exactly, but if the curves were
straight lines. . .

NOT a course of economic concepts! Will use some to illustrate the math, but the math is inde-
pendent.

Economics is ALL models - choosing right from start how to balance accuracy and easy of solu-
tion/analysis. Math different: models approximate exactness.

Draw pic! Math fits between Reality and Explanation/Prediction of Reality. Modeling is the first
link, solution is the second. Pure math is mostly concerned with the second link - economics equally
with both.

Graph of model for economic growth versus interest rates. Different models - which is best?

7 Systems of Linear Equations

7.1 Solving Systems of Linear Equations

Definition 7.1. A linear equation in 2 unknowns is an equation of the form

αx + βy = γ,

where α, β, γ are given constants and x, y are variables.
A system of two equations in two unknowns is a pair,{

α1x + β1y = γ1,
α2x + β2y = γ2.
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Notice: 6 constants and two variables.
A solution to a system is any pair of numbers (x, y) which satisfies both equations in the system.
The solution set is the complete collection of solutions.
A system is consistent if it has at least one solution and inconsistent if it has no solutions.

Graph linear equations as straight lines: example x + y = 2, x− y = 4, 2x + y = 2. Can solve all
three possible systems of two equations in two unknowns. Plot and solve ((3,−1), (0, 2), (2,−2)) by
inspection.

Pictures: what can happen? Two lines either intersect at a point (most likely), are parallel and
distinct (next most likely) or are the same line (least likely). Pics and examples.{

3x1 + 4x2 = 1
2x1 + 2x2 = 1

,

{
3x1 + 4x2 = 1
6x1 + 8x2 = 2

,

{
3x1 + 4x2 = 1
6x1 + 8x2 = 0

- geometry = lines.

We have proved the following:

Theorem 7.2. The solution set of a system of two equations in two unknowns has either none, one or infinite
solutions.

Suppose add a third equation → system of three equations in two unknowns. Most likely no
solutions. Picture.

Substitution and elimination

Generally difficult to solve systems graphically if you want numerical solutions rather than just
knowing they exist.
Substitution = solve one equation for x (in terms of y), or vice versa, then substitute in. E.g. with
above.
Elimination involves adding/subtracting multiples of the equations to eliminate a variable. E.g. . . .

More examples:

Market equilibrium

Examples. 1. Suppose that the supplied and demanded quantities qs, qd of a good are related to
the price p by the following equations:

qs = −5 + 2p, qd = 40− 3p.

Find the equilibrium price and quantity of goods.
Answer: at equilibrium, supply = demand, hence −5 + 2p = 40− 3p ⇒ 5p = 45 ⇒ p = 9 ⇒
qs = qd = 13.

2. Two related goods have the following supply and demand equations:{
qs

1 = −6 + 4p1, qd
1 = 50− 2p1 + p2

qs
2 = −4 + 2p2, qs

2 = 30− 3p1 + p2.

Find the equilibrium prices and quantities of the two goods.
Answer: supply = demand qs

i = qd
i results in two equations:{

−6 + 4p1 = 50− 2p1 + p2

−4 + 2p2 = 30− 3p1 + p2
=⇒

{
6p1 − p2 = 56
3p1 + p2 = 34

=⇒ 9p1 = 90,
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so that p1 = 10, p2 = 4, q1 = 34, q2 = 4.

3. Let c be a constant and consider the system of equations{
3x− 2y = 1,
cx + y = 3.

For each value of c find how many solutions the system has and calculate them (in terms of c).
Ans: (x, y) = 1

3+2c (7, 9− c) if c 6= −3/2. If so, no solutions.

4. As the previous question except now {
x + 2y = 1,
cx + cy = 2.

Ans: (x, y) = 1
c (c + 2,−1) if c 6= 0, 2. No soln if c = 0. c = 2 gives infinite solns ((x, y) =

(1− 2y, y)).

7.2 Linear Systems in n-variables

Definition 7.3. Linear Equation in n unknowns:

a1x1 + · · ·+ anxn = b.

Here ai, b are constants, xi variables (unknowns).
Linear system of m equations in n unknowns (m× n-system)

a11x1 + · · ·+ a1nxn = b1
a21x1 + · · ·+ a2nxn = b2

...
am1x1 + · · ·+ amnxn = bm

A solution to a system is any n-tuple (x1, . . . , xn) which satisfies every equation in the system.
The solution set is the complete collection of solutions.

Common to use x, y for m× 2 and x, y, z for m× 3 systems.

Definition 7.4. Two linear systems are equivalent if they have the same solution set.

(systems don’t have to have same number of equations){
3x1 + 4x2 = 1
2x1 + 2x2 = 0

equivalent to

{
x1 = −1
x2 = 1

equivalent to

{
x1 + 2x2 = 1
3x1 + 5x2 = 2

, etc, etc.
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Row Operations

Three ways of changing a system to get an equivalent one:

1. Multiply both sides of an equation by a non-zero constant.

2. Add a multiple of one equation to another.

3. Change the order of two equations.

Idea - use row operations to put a system in a nice form so we can read off solutions.

Examples. 1. 
3x + 4y− z = 9
x + 2y− 3z = 9
x− y + z = −2

Get (1, 1,−2).

2. 
x + 3y− 2z = 10
x + 2y− 2z = 7

2x− y− 4z = −1

Get (1 + 2z, 3, z) — infinity of solutions.

Some facts:

• All systems of linear equations have either no, one, or infinite numbers of solutions.

• A system is consistent if it has at least one solution and inconsistent if it has no solutions.

• A system with more equations than unknowns (m > n) is overdetermined. If m < n the system
is underdetermined.

• A consistent underdetermined system has infinite solutions.

Table of under/over/square versus expected numbers of solns.

Matrix Arrays

Definition 7.5. The augmented matrix of an m× n system is the matrix a11 · · · a1n b1
...

...
...

an1 · · · ann bn

 .

Don’t need to put the line in, but it’s often helpful.
Use row operations on these matrices and systems to solve them side by side. See that using

augmented matrix beams that can avoid having o write down the variables xi (saves time and makes
mistakes less likely). Know how to go between a linear system and its augmented matrix.

Example: 
2x1 + 3x2 + x3 = 4

−x1 + x3 = 1
x1 − x2 = 0

.

Solution: (1/2,1/2,3/2) - use bottom row to eliminate x1 terms in others first.
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Row Echelon Form

Want to do row operations until matrix is a simple as possible (roughly speaking as many zeros as
possible with 1’s going diagonally (Reduced Row Echelon Form). Every matrix has one and it doesn’t
matter what row ops you do, will always get to the same RREF. Once got there can either read off the
solns or easily tell there are none.

Example:

 1 1 2 0
0 1 3 1
1 0 −1 2

 reduce to row of zeros has no solution: 3rd row is 0=1 contradiction.

Left part of augmented matrix isn’t triangular, but is in a useful and easy to read form.

Definition 7.6. A is in Reduced Row Echelon Form if

1. Any entirely zero rows are at the bottom.

2. First 6= 0 entry in each non-zero row is a 1.

3. If a row isn’t all zero, then the next row has more leading zeros. (not necessarily one place to
the left - book mistake!)

4. Each column with a leading 1 has zeros elsewhere.

Examples. 1.

 1 3 4 0
−1 2 1 0
2 1 1 2

 −→
 1 0 0 1

0 1 0 1
0 0 1 −1

 which yields x3 = −1, x2 = 1, x1 = 1.

2.

 1 1 3 0 4
1 0 1 1 5
0 1 2 1 3

 −→
 1 0 1 0 3

0 1 2 0 1
0 0 0 1 2

which yields (x1, x2, x3, x4) = (3− x3, 1− 2x3, x3, 2).

Homogeneous Systems

A system is homogeneous if all the equations are of the form ai1x1 + ai2x2 + · · ·+ ainxn = 0. Clearly
any homogeneous system is consistent, since (x1, . . . , xn) = (0, . . . , 0) is a (trivial) solution. If the
system is underdetermined then it automatically has infinitely many solutions.

Example. Let c be a constant. Find all the solutions to the homogeneous system
3x + y + 2z = 0

6x− 2y + 4z = 0
cx + cy− 2z = 0

.

Only trivial unless c = −3 in which case get line (2λ, 0,−3λ).

(Ignore linear independence discussion - it’s the wrong use of the phrase. Ignore free-variables
too.)
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8 Matrices

8.1 General Notation

Matrices are used to summarize information and to facilitate many calculations at once. Will see the
latter in action later.

Definition 8.1. A matrix is a rectangular array of objects (usually numbers) in parentheses (square or
round).
A matrix with m rows and n columns is described as an m× n matrix.
A (column) vector is an m× 1 matrix.

Write A, B, C for matrices (capitals). Entries are aij for the ith row, jth column of A. Sometimes
write A = (aij).

Write column vectors boldface (underlined) x.
Scalars are usually written with lower case letters.
Sometimes write a matrix in terms of its column vectors:

A =

a11 · · · a1m
...

...
an1 · · · anm

 = (a1, . . . , an), ai =

a1i
...

ani

 .

Definition 8.2. Two matrices are equal if they have the same dimensions and their corresponding
entries are equal.
A matrix is square if m = n (same number of rows and columns).
A square matrix is diagonal if aij = 0 for i 6= j.
The identity matrix In is the diagonal n× n matrix such that aii = 1.
A square matrix all of whose entries are zero is called the zero matrix or null matrix.

8.2 Basic Matrix Operations

1. Scalar Multiplication (example) αA

2. Matrix Addition (same size example) A + B

3. Multiplication matrix by vector Ax: need, A m× n and x ∈ Rn. Linear systems are matrix mult.
Examples.

4. Multiplication matrix by matrix AB. AB = (Ab1, . . . , Abn). Need A m× r, B r× n then AB is
m× n.

Note: AB might be defined even when BA is not. Even when they are, the two are generally not
equal.

Examples. 1. Let A =

(
1 2
4 7

)
and anything but B =

(
p q

2q p + 3q

)
for AB 6= BA.

2. Cost and profits. Suppose a grocer buys and sells apples, bananas and oranges at the following
cents per fruit:
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Fruit Cost to buy Cost to sell
Apple 40 55

Banana 20 60
Orange 50 80

Suppose the grocer buys b = (ba, bb, bo)T and sells s = (sa, sb, so)T of each fruit. Then the profit
of the grocer is

(sa, sb, so)

55
60
80

− (ba, bb, bo)

40
20
50

 = 55sa − 40ba + 60sb − 20bb + 80so − 50bo.

3. Supply and demand in many markets. Suppose have a market of supplies of goods qs
1, . . . , qs

n
and demanded quantities qd

1, . . . , qd
n arranged in vectors qs, qd. If p is the vector of the prices

of these goods, then a linear model relating quantities and prices would be

qs = a + Ap, qd = b + Bp,

where a, b are constant vectors of length n and A, B are square n× n matrices. The equilibrium
pricesd would then be a solution p to the equation

(A− B)p = b− a.

We shall see how to solve this for p and thus q in chapter 9.

8.3 Matrix Transposition

Definition 8.3. The transpose of an m× n A = (aij) is the n×m AT = (bij) where bij = aji.

Examples.
Rules - behave well with scalar mult and addition and (AB)T = BT AT (and with C) - examples.

Note (AT)T = A.

Definition 8.4. A is symmetric if A = AT (note that we need A to be square).

8.4 Some Special Matrices

Some types of matrices have special properties that are useful in studying equations.

Definition 8.5. A square matrix is idempotent if A2 = A.

Hence An = A for all n = 1, 2, 3, 4, 5, . . .

Example. A = (4, 6//− 2,−3) is idempotent.

(Ignore partitioned matrices)

Definition 8.6. The trace of a square matrix A is the sum a11 + a22 + · · ·+ ann.

Theorem 8.7. tr(AB) = tr(BA) (regardless of whether AB = BA or not - proof in book).

Example. Check for two matrices. (1,1//2,-1) and (2,-1//1,2). Observe tr(AB) 6= tr(A) tr(B).
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9 Determinants and the Inverse Matrix

9.1 Defining the Inverse

Matrix algebra works almost like normal algebra with the exception of commutativity of multiplica-
tion and that we have no division.

Inverses: 2 · 1
2 = 1, so what is comparable idea for matrices? Only works for most but not all

square matrices.

Definition 9.1. The inverse A−1 of an n× n matrix A is the n× n matrix which satisfies

AA−1 = A−1A = In.

Not every square matrix has an inverse. Those that do not are known as singular. Only one (at
most) inverse can exist for any given matrix.

Why do we care? Want to solve matrix equations such as Ax = b, where A, b are given and x is
unknown (of same length as b). Solution is x = A−1b.

DON’T WRITE AS DIVISION!!! Generally A−1B 6= BA−1.
Examples - formula for 2× 2. Alternative to book: if B,C both inverse to A then B = BI = BAC =

IC = C so only one possibility. However(
a b
c d

)
· 1

ad− bc

(
d −b
−c a

)
=

(
1 0
0 1

)
,

thus
(

a b
c d

)−1

= 1
ad−bc ·

(
d −b
−c a

)
, provided ad− bc 6= 0.

If ad− bc = 0 then can’t divide and so don’t get an inverse (not proper argument).
Examples.

Definition 9.2. ad− bc is the determinant of the matrix A and is denoted |A|.

Observe that A is invertible (A−1 exists) iff |A| 6= 0. Can write the inverse of a 2× 2 matrix as

A−1 =
1
|A|

(
d −b
−c a

)
, if |A| 6= 0.

Properties of the Determinant

Do example of each.

•
∣∣AT

∣∣ = |A|.
• Swap two rows (or columns) of A changes sign of det.

• Two identical rows (or columns) means |A| = 0.

• One row (column) a multiple of another then |A| = 0.

• Add a multiple of one row (column) to another leaves det unchanged.

8



• Det of triangular matrix is product of diagonal elements.

• Multiply row (column) of A by λ multiplies det by λ.

• Multiply every element of A by λ multiplies det by λn (here n = 2).

• |AB| = |A| |B|.

• |A + B| 6= |A|+ |B| (in general).

Example. Recall supply/demand equilibrium from eariler.

qs = a + Ap, qd = b + Bp,

where a, b are constant vectors of length n and A, B are square n× n matrices. The equilibrium prices
would then be a solution p to the equation

(A− B)p = b− a,

which yields p = (A− B)−1(b− a), provided A− B is invertible.

Put in some numbers: suppose (as in earlier example){
qs

1 = −6 + 4p1, qd
1 = 50− 2p1 + p2

qs
2 = −4 + 2p2, qs

2 = 30 + p1 − 3p2.

Then

qs =

(
−6
−4

)
+

(
4 0
0 2

)
p, qd =

(
50
30

)
+

(
−2 1
1 −3

)
p.

Little of the geometry of 2 by 2 changing triangle area.

9.2 Determinants and Inverses of 3× 3 Matrices

Definition 9.3. The ijth minor Mij of a 3× 3 matrix A is the determinant of the 2× 2 matrix obtained
by deleting the ith row and jth column of A.
The ijth cofactor of A is the Cij = (−1)i+j Mij. (do cofactor pattern)

Examples.

Definition 9.4. The determinant of A is any of the 6 sums:

|A| =
3

∑
i=1

aijCij =
3

∑
j=1

aijCij.

The other possible sums are always zero.
Examples + quick chat about volumes.
To find the inverse of a 3× 3 matrix with det 6= 0,

1. Write down matrix of cofactors.

2. Define adjoint adj(A) as transpose of matrix of cofactors.

3. A−1 is divide by determinant.

Example.
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9.3 The Inverse of an n× n matrix and its properties

Can use cofactors to find the det and adjoint of higher order matrices just as before. The cofactors are
the determinants of the minors (up to sign), etc. Becomes computationally time consuming however.

Easier (sometimes) method is to use two tricks:
1. Diagonal method for 3× 3 determinant.
2. (A|I) method for inverse.

Example. A =

 2 1 3
−1 4 −1
0 3 1

−1

= 1
6

 7 8 −13
1 2 −1
−3 −6 9

 — do both ways.

Theorem 9.5. A, B non-singular⇒ AB non-singular and (AB)−1 = B−1A−1.
(A−1)−1 = A.
(A−1)T = (AT)−1.
det(A−1) = (det A)−1

Proof. Calculate B−1A−1(AB) and (AB)B−1A−1.
A−1 A = I. . . , etc.

Example. Firm produces three outputs y1, y2, y3 with three inputs z1, z2, z3. The input-requirements
matrix

A =

2 1 2
2 0 3
3 2 4


relates the outputs to inputs according to z = Ay. If firm wants to produce y1 = 2, y2 = 3, y3 = 1
it needs z = (9, 7, 16). Suppose instead that firm has resources z = (17, 16, 29), then can produce
y = A−1z = (5, 3, 2). Here

A−1 =
1
3

 6 0 −3
−1 −2 2
−4 1 2

 .

Talk about complexity of say an administrator shutting down a company and trying to drain stock
to zero while maximising profit.

9.4 Cramer’s rule

Inverse matrices are useful for solving the equation Ax = b where A is square and invertible.
Cramer’s rule is an alternative method that allows you to obtain as many or as few entries of x
without having to compute all the others.

Simply use the formula:

x = A−1b
1
|A|

C11 · · · Cn1
...

. . .
...

C1n · · · Cnn


b1

...
bn

 =

b1C11 + b2C21 + · · ·+ bnCn1
...

b1C1n + b2C2n + · · ·+ bnCnn

 .

The upshot is that

xi =
1
|A|b1C1i + b2C2i + · · ·+ bnCni
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for each i = 1, . . . , n. Otherwise said, xi is the determinant of the matrix A with its ith column
replaced with b.

Example. Calculate x2 if Ax = b where A =

2 1 2
2 0 3
3 2 4

 and b = (2, 3,−5)T. Ans −6. Could have

obtained from A−1 earlier. Sim x1 = 9, x3 = −5.

Original method is usually best when need 2 or more values of xi. Also has advantage that once
you have A−1 can change to any b and still solve. Finding all solutions with Cramer is same number
of calculations as by finding inverse.

Example. Open Leontief Input-Output model. Model economy as a basket of related goods, the out-
puts of each being required for the others. For example suppose there are three sectors to consider;
electronics, mining, automotive. If these sectors are related by the following: Each $ 1 of produc-
tion in each of the industries in the left column requires the corresponding level of production in

the top row.

Electronics Mining/Drilling Automotive
Electronics 0.4 0.2 0

Mining/Drilling 0.2 0.2 0.4
Automotive 0.3 0.1 0.1

Let matrix of above

coefficients be A: aij denotes the monetary input required into industry j in order to produce one
unit of industry i’s output. Let x be the vector of money outputs of each industry, then Ax is the
vector of total production demand. Let d be the demand of consumers from the industries. Thus
total demand on the industries is Ax + d. In a closed economy this has to equal the supply demand,
hence x = Ax + d. The result is x = (I − A)−1d. For our example

(I − A)−1 =

 0.6 −0.2 0
−0.2 0.8 −0.4
−0.3 −0.1 0.9

−1

=

1.1954 0.517 0.230
0.862 1.552 0.690
0.747 0.345 1.264

 .

If the public demands d = (5000, 1000, 10000) then the total output of the industries must be x =
(12586, 12758, 16724).
Of course could have used Cramer’s rule if just one variable was required.

10 Advanced topics in Linear Algebra

10.1 Vector Spaces

Recall: a vector is a matrix with n rows and 1 column. Written v. vT is a row vector.
Think of vectors geomterically as arrows to points. Thus v = (1

2) is the vector pointing from the
origin in R2 to the point with co-ordinates (1, 2).

Example of adding/subtracting vectors graphically + scaler multiplication.

Definition 10.1. The inner product of two vectors v, w is the product v ·w = vTw = ∑ viwi.

The length of a vector is |v| =
√

v2
1 + · · ·+ v2

n =
√

v · v.

Ex of length calc.
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Definition 10.2. A list of n-dimensional vectors v1, . . . , vn are linearly dependent iff det(v1, . . . , vn) = 0.
Equivalently we have theat there exist scalers λ1, . . . , λn not all zero such that λ1v1 + · · ·+ λnvn = 0.
Vectors are linearly independent otherwise. I.e. the only scalar solns to above eqn are all zero.

In 2-dim a pair of vectors is linearly independent if they point in separate directions (span paral-
lelogram with non-zero area). In 3-dim need to span parallelepiped with non-zero volume (3 vectors
don’t lie in a common plane).

Examples. 1. (1, 2)T and (3, 1)T are lin ind.

2. (1, 3, 4)T, (1, 3, 0)T and (0,−1, 1)T are lin ind (calc det), but replace v3 with (0, 0, 1)T to get trio
that is not lin ind.

Definition 10.3. A basis for a vector space V is a list of linearly independent vectors so that any
vector in V can be generated as a linear combination of vectors in the basis.

Example. See above.

Observe that in Rn a basis contains exactly n linearly indep vectors.
How to solve? Suppose have a basis v1, . . . , vn of Rn. Given a vector u, how to we find the

coefficients? Take dot products of u with each basis vector to get n eqns in n variables:v1 · v1 · · · v1 · vn
...

. . .
...

vn · v1 · · · vn · vn


λ1

...
λn

 =

u · v1
...

u · vn

 .

Point is that it can be done!

Example. Let u = (4,−2), v1 = (1, 2)T and v2 = (3, 1)T. We want to find λ1, λ2 such that u =
λ1v1 + λ2v2. Get −2, 2.

Easiest when a basis is orthonormal: i.e. vi · vj = δij. In such cases,

u = λ1v1 + · · ·+ λnvn =⇒ λi = u · vi.

Angles between vectors: The angle between two vectors (−π/2 < θ ≤ π/2) is related to the
vectors by

v ·w = |v| |w| cos θ.

Clear that vectors are orthogonal iff they have zero inner product.
Standard basis of Rn is orthogonal - ex.

There are lots of vector spaces that are not Rn. E.g. sets of functions, etc. Bases/dimension
defined similarly: dimension is simply the maximum number of linear indep vectors in the space.

Definition 10.4. The rank of a matrix is the maximum number of linearly independent columns. It
always equals the maximum number of linearly independent rows.

Example of a 4by5 of rank 3.

Theorem 10.5. An n× n matrix is non-singular iff det A 6= 0 ⇐⇒ A−1 exists ⇐⇒ rank(A) = n.
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10.2 The Eigenvalue Problem

Eigenvalues and eigenvectors are convenient concepts to describe what a matrix does when it multi-
plies vectors. You can say that a matrix stretches by a factor of 3 in one direction and 2 in another -
this is exactly the eigendescription of a matrix.

Definition 10.6. Let A be n× n. A non-zero vector x ∈ Rn is an eigenvector of A with eigenvalue λ
if Ax = λx.

A stretches x by a factor of λ but doesn’t change its direction.

Example: If A =

(
2 1
3 4

)
, x1 =

(
1
−1

)
, x2 =

(
1
3

)
, then

Ax1 = x1. Ax2 = 5x2.

Characteristic equation: Write Ax = λx as (A− λI)x = 0. We’re looking for non-zero x solving
this. But such an x exists iff A− λI is singular: iff det(A− λI) = 0.

p(λ) = det(A− λI) = 0 is degree n polynomial. If λ1 is a solution then A− λ1 I is singular and so
there exists a non-zero vector v1 with (A− λ1 I)v = 0. Thus all solutions to p(λ) = 0 are eigenvalues
and to each there corresponds at least one eigenvector.

Since p(λ) degree n, there are at most n eigenvalues - repeated roots mean that many matrices do
not have this many. Eigenvalues may also be complex...

Note that evectors are defined only up to non-zero scale.

Theorem 10.7. λ is an eigenvalue of A iff
⇐⇒ (A− λI)x = 0 has anon-zero solution x
⇐⇒ A− λI is singular
⇐⇒ det(A− λI) = 0.

Examples.

1. A = 7Id has λ = 7 v = anything.

2. A =

(
2 2
1 3

)
has λ = 4, 1, v1 =

(
1
1

)
, v2 =

(
−2
1

)
.

3. A =

(
2 1
−1 4

)
has λ = 3, v =

(
1
1

)
. Only one eigenvalue and one eigenvector.

4. A =

1 1 1
0 2 1
0 0 3

 has λ = 1, 2, 3, v =

1
0
0

 ,

1
1
,

1
1
1

.

5. A =

0 1 1
1 0 1
1 1 0

 has λ = 2,−1, v =

1
1
1

 ,

1
1
1

⊥.

6. A =

1 1 1
0 1 1
0 0 1

 has λ = 1, v =

1
0
0

.
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Diagonalization

Diagonalizing a square matrix is about finding a similar diagonal matrix. I.e. given A we want to
find an invertible M and diagonal D such that A = MDM−1.

Theorem 10.8. Suppose that an n× n matrix A has n independent eigenvectors v1, . . . , vn with eigenvalues
λ1, . . . , λn. Then A = MDM−1 where

M = (v1, . . . , vn), D = diag(λ1, . . . , λn).

1. A =

(
2 2
1 3

)
is diagonalizable.

2. A =

(
0 −2
1 3

)
is diagonalizable.

3. A =

1 1 1
0 2 1
0 0 3

 is diagonalizable.

4. A =

0 1 1
1 0 1
1 1 0

 is diagonalizable.

(
2 1
−1 4

)
is not diagonalizable, neither is

1 1 1
0 1 1
0 0 1

.

Definition 10.9. A square matrix is orthogonal if it satisfies QTQ = I.

Theorem 10.10. If A is a symmetric matrix then it has n independent orthonormal eigenvectors. Putting
these as the columns of a matrix Q we have Q being orthogonal. Moroever Q−1AQ is diagonal with e’values
down diagonal.

10.3 Quadratic Forms

Useful in calculus especially - will use later. All need to know is how to make them out of matrices.

Definition 10.11. A quadratic form is a scalar expresiion q(x) = xT Ax where A is a square matrix.

Don’t need A to be symmetric but can always choose it to be so.
Examples:

Definition 10.12. A quadratic form q(x) = xT Ax is
positive definite
positive semi-definite
negative definite
negative semi-definite

if q(x)


> 0
≥ 0
< 0
≤ 0

for all x 6= 0.
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In the case that A is symmetric the above can be translated into statements about eigenvalues: A
quadratic form q(x) = xT Ax is

positive definite
positive semi-definite
negative definite
negative semi-definite

if the eigenvalues of A are all


> 0
≥ 0
< 0
≤ 0.

Theorem 10.13. Can write all quadratic forms using symmetric matrices A. +/− (semi-) definiteness relates
to signs of eigenvalues.

Definition 10.14. A principal minor of a square matrix A is the determinant of a matrix obtained by
deleting some rows and columns from A - the rows and columns must be identical.
The leading principal minors of a square matrix A are the determinants of the matrices A1 = a11,
A2 = ( a11 a12

a21 a22 ), A3 = · · · , . . . An = A - i.e. delete the last n− k rows and columns.

Theorem 10.15. A symmetric matrix A is positive definite iff all leading principal minors are positive.
A symmetric matrix A is negative definite iff the leading principal minors alternate -/+/-/+ etc.
A symmetric matrix A is positive semi-definite iff some principal minors are zero and the rest are positive.
A symmetric matrix A is negative semi-definite iff −A is positive semi-definite.

Examples. 1. q(x) = 7x2 − 2xy + y2 is positive definite: leading principal minors 7, 6.

2. q(x) = 2y2 + 2xy is positive semit-definite: principal minors 0, 2, 0.

3. q(x) = 2x2 + 2y2 + z2 + 4xy+ 2yz is positive semi-definite: principal minors 2,2,1, 0,2,1, 0 (1by1,
2by2, 3by3).

11 Calculus for functions of n-variables

11.1 Partial Differentiation

Use (x1, . . . , xn) to denote a point in Rn and y = f (x) = f (x1, . . . , xn) denotes a function of these
variables. Example y = 7x1 + 3 sin(x1x2

2).
Continuity/differentiability is a little harder than in 1-dimension. Give rough verbal descriptions

of why.

Definition 11.1. The partial derivative of the function f (x1, . . . , xn) with respect to xi is the limit

∂ f
∂xi

= lim
h→0

f (x1, . . . , xi + h, . . . , xn)− f (x1, . . . , xn)

h
,

if the limit exists. Often write fxi as a shorthand.

Idea: hold all variables constant and look at small changes in function related to small changes in
one variable at a time. Picture of surface and slopes.

Examples. 1. Let f (x1, x2, x3) = 7x1 + 3x2x−1
3 , then ∂ f

∂x1
= 7, ∂ f

∂x2
= 3x−1

3 and ∂ f
∂x3

= −3x2x−2
3 .

2. Let f (x1, x2) = 7x1 + 3 sin(x1x2
2), then ∂ f

∂x1
= 7 + 3x2

2 cos(x1x2
2) and ∂ f

∂x2
= 3x1 cos(x1x2

2).

Notice how the chain-rule still applies.
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Marginal-product functions

Suppose that y = f (x1, . . . , xn) represents the output of an company/industry/economy which de-
pends on n inputs x1, . . . , xn. The partial derivative fxi represents (approximately) the change in
output that results from an increase of 1 in the input xi, if all other inputs are unchanged. This ap-
proximation will be better if the units are smaller. fxi is thus the marginal product function with
respect to the variable xi.

Examples. 1. Let y = 18x1/3
1 x1/2

2 be the production function (typically decreasing powers gives
decreasing returns from more input - law of decreasing marginal productivity). Then the
marginal production functions are

fx1 = 6x−2/3
1 x1/2

2 , fx2 = 9x1x−1/2.

2. General Cobb–Douglas production function y = f (K, L) = AKαLβ where A > 0, 0 < α, β < 1
are constants dependent on the technology/industry. Here K represents available capital and
L available labor. Then

fK = αAKα−1Lβ, fL = βAKαLβ−1.

Observe: as quantity of labor increases, the marginal benefit of the increase reduces; as capital
increases the marginal benefit of it decreases. (I.e. doubling K does not result in twice the
output). Conversely, increasing K leads to higher marginal product of L - labor benefits from
extra capital. Thus the inputs are complimentary.

3. The constant elasticity of substitution (CES) production function is the following

y = A[δx−r
1 + (1− δ)x−r

2 ]−1/r],

where A > 0, 0 < δ < 1, r > −1. After some nasty calcs, observe that

yx1 =
δ

Ar

(
y
x1

)r+1

, yx2 =
δ

Ar

(
y
x2

)r+1

.

Time-dependence

Suppose that the inputs x1, . . . , xn are dependent on time. The chain rule then says that

y′(t) = fx1 x′1 + · · ·+ fxn x′n.

Examples. 1. y = 7x1 + 3x2
2 where x1 = 2t2, x2 = t3. Then calc. . .

2. Etc

11.2 Second-order partial derivatives

Can differentiate multiple times. The partial derivative fxixj is simply ∂
∂xj

fxi . Supposing that all
differentials exist, one may keep differentiating forever.

Example. Find derivs up to order 3 of f (x1, x2) = x2
1x3

2 − 4x1x2
3.
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Observe that the mixed partials satisfy Young’s theorem: if the derivatives are continuous then
the order one calculates derivatives is irrelevant; e.g. fx1x2 = fx2x1 .

Definition 11.2. The gradient vector of a function of n variables f (x) is the vector (of length n) of
partial derivatives ∇ f = . . .

Fact: gradient vector points orthogonally away from surface.
Example.

Definition 11.3. The Hessian of a function f (x) is the n× n matrix of second order partial derivatives

∇2 f =

 fx1x1 · · · fx1xn
...

. . .
...

fxnx1 · · · fxnxn

 .

Notice a function of n variables has n partial deriavtives of order 1 and n2 of order 2 (indeed nk

of order k).
Example.
Interpretation: f1x1 +

1
2 f11x2

1 is approx of what f looks like in the x1 direction. I.e. f1 is the slope,
and the second derivative indicates whether the function curves up or down.

Examples. The Cobb-Douglas production function y = f (x1, x2) = Axα
1 xβ

2 with two inputs has
Hessian

∇2 f

(
α(α− 1)Axα−2

1 xβ
2 αβAxα−1

1 xβ−1
2

αβAxα−1
1 xβ−1

2 β(β− 1)Axα
1 xβ−2

2

)
.

Give 0 < α, β < 1, the signs are thus ( − +
+ − ). That f11 and f22 are negative says that as one

increases one input, the marginal product of that variable decreases. Conversely f12 > 0 says
that as one increases on variable, the marginal product of the other increases.

11.3 First order total differential

Used to writing dy
dx = f ′(x) from which we get d f = f ′(x)dx. This is useful for chain rule calculations,

etc.;
∫

d f =
∫

f ′(x)dx is the change of variable formula for integrals. We think about this as d f
measuring the size of a small change in f resulting from the small change dx in x. An analogous
thing can be done in multi-variable calculus:

Definition 11.4. The first order total differential of a function y = f (x1, . . . , xn) is

dy = d f =
∂ f
∂x1

dx1 + · · ·+
∂ f
∂xn

dxn = f1dx1 + · · ·+ fndxn.

The total derivative allows us to calculate (approximately) the resulting small change in the value
of the function f given small changes dx1, . . . , dxn in the inputs. The approx is better if the changes
are small compared to the size of f itself.

Example. Let y = f (x1, x2) = 60x1/2
1 x1/3

2 . Then

dy = 30x−1/2
1 x1/3

2 dx1 + 20x1/2
1 x−2/3

2 dx2.
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Suppose that the inputs are currently x1 = 9, x2 = 8 and that we increase each by x1 by 1 and x2 by 2
(dx1 = 1, dx2 = 2). Then the approximate change in y is

dy = 30 · 1
3
· 2 · 1 + 20 · 3 · 1

4
· 2 = 20 + 30 = 50.

Note f (9, 8) = 360 and f (10, 10) = 408.775 ≈ 360 + 50, so approximation is quite good. Advantage
is that the approx is easy to calculate once you have the partial derivative values, can plug in any
changes in the inputs after this.

Implicit Functions

Can use total derivatives to calculate slopes of implicitly defined functions.
F(x, y) = 0⇒ Fxdx + Fydy = 0⇒ dy

dx = Fx
Fy

.

Examples. 1. x2 + y3 = 5 at (2, 1) — do as a function.

2. x sin y + y sin x = π at (π/2, π/2) — can’t repeat as a function.

Level curves

Let y = f (x1, . . . , xn). The set of points (x1, . . . , xn) for which y is a constant is a level curve (n = 2) or
level set n ≥ 3.

Suppose y = f (x1, x2) is constant. Then 0 = d f = f1dx1 + f2dx2. The level curve thus has slope
− f1/ f2.

Examples. 1. Find the slopes of the level curves of the function f (x1, x2) = x2
1x3

2. Here

0 = f1dx1 + f2dx2 = 2x1x3
2dx1 + 3x2

2x2
2dx2 ⇒

dx2

dx1
= −2x2

3x1
.

Isoquants

If y = f (x1, x2) is a production function for inputs x1, x2, then the level curves of y are described as
isoquants — curves of ‘equal quantity’. I.e. the level curve 100 = f (x1, x2) is the curve whose points
describe all the possible input combinations that will product 100 output.

It is common to want to substitute one input for another in order to produce the same outcome.
The rate at which one can do this is called the Marginal Rate of Technical Substitution and is defined as
follows:

MRTS = −dx2

dx1
=

f1

f2
.

Example. Find the MRTS for the production function y = f (x1, x2) = x2/3
1 x1/3

2 . Here

MRTS =
2x2

x1
.

If the inputs are currently x1 = x2 = 1000, then MRTS = 2. Notice (10012 × 998)1/3 = 999.99 =
(9992 × 1002)1/3. I.e. if delete one of x1 need to replace with two of x2.
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Notion carries over to more variables. Suppose have three variables y = f (x1, x2, x3). Then
MRTS1,3 = −dx3

dx1
= f1

f3
is the marginal rate at which input 1 can be substituted for input 3.

Example. If y = f (x1, x2, x3) = 12x1/4
1 x1/3

2 x1/2
3 , then the partial derivatives are

f1 =
3x1/3

2 x1/2
3

x3/4
1

, f2 =
4x1/4

1 x1/2
3

x2/3
2

, f3 =
6x1/4

1 x1/3
2

x1/2
3

,

from which we get the marginal rates of technical susbstitution

MRTS1,2 =
f2

f1
=

4x1

3x2
, MRTS1,3 =

f3

f1
=

2x1

x3
, MRTS2,3 =

f3

f2
=

3x2

2x3
,

MRTS2,1 =
f1

f2
=

3x2

4x1
, MRTS3,1 =

f1

f3
=

x3

2x1
, MRTS3,2 =

f2

f3
=

2x3

3x2
.

I.e. if have equal quantities of all three inputs going into the system, then can replace one of x2 by
4/3 of x1, or 3 of x2 with 4 of x1.
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