
3 Regression and Best-fitting Polynomials

The simplicity of polynomials makes them well-suited to modelling problems. Straight lines in par-
ticular, are often used to approximate experimental data and infer relationships between variables.

Example 3.1. Suppose at time t hours in the afternoon, a hiker’s GPS
locator says that they’ve travelled y miles along a hiking trail;

ti 1 2 3 5
yi 4 8 10 21

How far has the hiker traveled after 4 hours?
By plotting the points, the relationship looks to be approxi-
mately1linear: y ≈ mt + c. What is the best choice of line, and how
should we find the coefficients m, c?
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Exercise Discuss what good criteria would be when choosing our line. What do we mean by best?
Intuitively, we want the points to be as close to the line as possible, but what should close mean here?
What would we like to use the approximating line to do? Here are three lines plotted with the data
set: of the choices, which seems best and why?
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In our problem, we want to use the line to predict the hiker’s location: for a given t we want to predict
ŷ = mt + c. It seems reasonable that we’d want our line to minimize vertical errors ŷi − yi, since these
are a measure of how bad our prediction is. Returning to the above exercise, we can compute these
errors: since a positive error is as bad as a negative, we make all the errors positive

ti 1 2 3 5
yi 4 8 10 21

y = 4t |ŷi − yi| 0 0 2 1
y = 2t + 4 |ŷi − yi| 2 0 0 7
y = 5t − 4 |ŷi − yi| 3 2 1 0

It seems reasonable to claim that the first of these lines is better than the others. But can we do
better; is there a best line? We might define best as meaning that the sum of the absolute errors is
minimal ∑ |ŷi − yi|. This is certainly a reasonable approach. However, for reasons of computational
simplicity, statistical interpretation, and to particularly discourage large errors, the standard approach
is to minimize the sum of squares.

1There are at least two reasons why the data for the distance traveled by the hiker might not be perfectly linear; why?
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Definition 3.2. Suppose we have a finite data set {(ti, yi)}. If ŷ = mx + c is a linear predictor for y
given x, then

• The ith error is the difference ei = ŷi − yi = mti + c − yi.

• The regression line or best-fitting least-squares line for the data is the function ŷ = mt + c which
minimizes the sum ∑ e2

i of the squares of the errors.

To return to our example, suppose the predictor was y = mt + c. We expand the table

ti 1 2 3 5
yi 4 8 10 21
ŷi m + c 2m + c 3m + c 5m + c
ei m + c − 4 2m + c − 8 3m + c − 10 5m + c − 21

Our goal is therefore to minimize the ‘sum of squares’ function

S(m, c) = ∑ e2
i = (m + c − 4)2 + (2m + c − 8)2 + (3m + c − 10)2 + (5m + c − 21)2

This might look horrible, but it is fairly easy to deal with if we use a little calculus. At a minimum
(m, c), moving either m or c should result in S(m, c) getting larger; if we treat first c and then m as a
constant, this says that the derivatives of S with respect to both m, c must be zero:a

• c constant, differentiate with respect to m;

Sm = 2(m + c − 4) + 4(2m + c − 8) + 6(3m + c − 10) + 10(5m + c − 21)

= 2
[
(1 + 22 + 32 + 52)m + (1 + 2 + 3 + 5)c − 4 − 2 · 8 − 3 · 10 − 5 · 21

]
= 2

[
39m + 11c − 155

]
= 2

[(
∑ t2

i
)

m +
(
∑ ti

)
c − ∑ tiyi

]
• m constant, differentiate with respect to c;

Sc = (m + c − 4) + (2m + c − 8) + (3m + c − 10) + (5m + c − 21)
= (1 + 2 + 3 + 5)m + (1 + 1 + 1 + 1)c − 4 − 8 − 10 − 21

= 11m + 4c − 43 =
(
∑ ti

)
m + nc − ∑ yi

Since both of these should be zero, we have a pair of simultaneous equations which can be solved in
the usual manner{

39m + 11c = 155
11m + 4c = 43

=⇒ m =
21
5

, c = −4
5

=⇒ ŷ =
1
5
(21t − 4)

This is the line graphed in the original problem! We can also answer the original question, we expect
the hiker to have traveled approximately ŷ = 1

5 (21 · 4 − 4) = 16 miles after 4 hours.
The sum of the squared errors for our regression line is ∑(ŷi − yi)

2 = 4.4; this compares to 5, 53 and
14 for our three options above.b

aThis is really partial differentiation ∂S
∂m = 0 = ∂S

∂c . Fear not if you’ve never seen this, a formula is coming!
bInterestingly, the sum of the absolute errors ∑ |ŷi − yi| is better (3 < 3 3

5 ) for the line y = 4t. We are making a choice
here as to what best-fitting means!
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In general we have the following result.

Theorem 3.3 (Linear Regression). Given a set of data pairs {(ti, yi) : i = 1, . . . , n} the best-fitting
least-squares line has equation ŷ = mt + c where m, c satisfy{(

∑ t2
i
)

m + (∑ ti) c = ∑ tiyi

(∑ ti)m + nc = ∑ yi
⇐⇒

{
t2m + tc = ty
tm + c = y

This is a pair of simultaneous equations for the coefficients m, c, which can be solved either as a
matrix problem or by substitution:

c = y − mt, m =
ty − ty

t2 − t2 =
n ∑ tiyi − ∑ ti ∑ yi

n ∑ t2
i − (∑ ti)

2 =
∑(ti − t)(yi − y)

∑(ti − t)2

where t, y are the average values of ti, yi, and ty = 1
n ∑ tiyi, t2 = 1

n ∑ t2
i , etc.

Example 3.4. Five students’ scores on two quizzes were as follows:

Quiz 1 8 10 6 7 4
Quiz 2 10 7 5 8 6

1. If a student scores 9/10 on the first quiz, what might we expect them to score on the second?

2. If a student scores 8/10 on the second quiz, predict their score on the first.

We’ll answers these two problems using two different approaches. For part 1, we compute using
linear equations; the t data is Quiz 1 and y is Quiz 2, whence

5

∑
i=1

t2
i = 64 + 100 + 36 + 49 + 16 = 265

5

∑
i=1

ti = 8 + 10 + 6 + 7 + 4 = 35

5

∑
i=1

yi = 10 + 7 + 5 + 8 + 6 = 36

5

∑
i=1

tiyi = 80 + 70 + 30 + 56 + 24 = 260
0

2
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8

10

Q
2
=

y

0 2 4 6 8 10
Q1 = t

9

8

{
265m + 35c = 260
35m + 5c = 36

⇐⇒
{

20m = 8
c = 36

5 − 7m
⇐⇒ (m, c) =

(
2
5

,
22
5

)
Our regression line is therefore ŷ(t) = 2

5 (t + 11): this is the line which minimizes the sum of the
squares of the vertical deviations. The prediction given a Quiz 1 score of 9/10 is that the student will
score ŷ(9) = 2

5 · 20 = 8. Notice that the average score y = 7.2 on Quiz 2 is higher than t = 7 on Quiz
1, and yet the hypothetical student’s score is expected to go down!
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To solve the second problem, we need to swap the roles of our variables. This time we use the explicit
formulæ (note that y ↔ t!):

t =
35
5

= 7, y =
36
5

= 7.2,

ti − t 1 3 −1 0 −3
yi − y 2.8 −0.2 −2.2 0.8 −1.2
(yi − y)2 7.84 0.04 4.84 0.64 1.44
(yi − y)(ti − t) 2.8 −0.6 2.2 0 3.6

m =
∑(yi − y)(ti − t)

∑(yi − y)2 =
8

14.8
=

20
37

≈ 0.541

c = t − my = 7 − 20 · 36
5 · 37

=
115
37

≈ 3.108

0
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4

6
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10

Q
2
=

y

0 2 4 6 8 10
Q1 = t

275
37

8

The line for predicting Quiz 1 given Quiz 2 is t̂ = 1
37 (20y + 115), whence t̂(8) = 275

37 ≈ 7.432. Notice
how this minimizes the sum of the squares of the horizontal deviations and is therefore different to
the line in the previous question (dotted in the picture).

Interpretation The regression line passes through the center of mass (t, y) of the data. If you’ve stud-
ied statistics, you might have seen the formula for m written in terms of the variance and covariance

Var t =
1
n

n

∑
i=1

(ti − t)2, Cov(t, y) =
1
n

n

∑
i=1

(ti − t)(yi − y)

Variance quantifies how much the values ti deviate2 from their mean t. Covariance essentially mea-
sures to what extent t and y deviate from their means in the same/opposite directions: Cov(t, y) > 0
means that when t > t we expect y > y; in such a case the regression line has positive slope.
A further piece of interpretation comes from consideration of the coefficient of determination3

R2 := 1 − ∑ e2
i

∑(yi − y)2 =
∑(ŷi − y)2

∑(yi − y)2 = m2 ∑(ti − t)2

∑(yi − y)2 = m2 t2 − t2

y2 − y2
= m2 Var t

Var y
=

Cov(y, t)√
Var y Var t

The coefficient of determination measures the fraction of the total variation in the output y which is
explained by the linear prediction ŷ = mt + c. By the last formula, R2 is symmetric; it does not matter
whether y predicts t or vice versa. If R2 is close to 1 it means that the linear model makes for a good
predictor; the sum of the squared errors is small.
To return to our examples:

• In Example 3.1, y = 4+8+10+21
4 = 43

4 = 10 3
4 , and

∑(yi − y)2 =
272 + 112 + 32 + 412

42 =
635
16

, ∑ e2
i = 4.4 =⇒ R2 ≈ 0.9723

The interpretation here is that the data is very close to being linear; the output yi is very closely
approximated by the linear model ŷi = mti + c.

2The standard deviation is the square root σt =
√

Var t. This has the advantage of having the same units as t.
3The equivalence of these expressions is a messy exercise; use whichever formula you like! The point is to obtain

interpretations, not to verify all this formally.
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• In Example 3.4, ∑(yi − y)2 = 14.8 and

∑(ŷi − yi)
2 = ∑

(
2
5

ti +
22
5

− yi

)2

= 3.2 =⇒ R2 =
3.2
14.8

≈ 0.2162

In this case the coefficient of determination is small, which indicates that the model does not
explaining much of the variation in the output.

Example 3.5. We do one more easy example with simple data

{(ti, yi)} = {(1, 4), (2, 1), (3, 2), (4, 0)}

this time using the formulae involving averages. You should feel confident doing this by hand,
entirely without the assistance of even a calculator!

data average

ti 1 2 3 4 t = 10
4

yi 4 1 2 0 y = 7
4

t2
i 1 4 9 16 t2 = 15

2

y2
i 16 1 4 0 y2 = 21

4

tiyi 4 2 6 0 ty = 3

m =
ty − ty

t2 − t2 =
3 − 70

42

15
2 − 100

42

= −11
10

= −1.1

c = y − mt =
7
4
+

11 · 10
10 · 4

=
9
2
= 4.5

0

1

2

3

4
y

0 1 2 3 4
t

ŷ = −1.1t + 4.5

R2 = 121
175 = 0.69

∑ e2
i = 2.7

The line for predicting y given t is ŷ = − 11
10 t + 9

2 = −1.1t + 4.5. Moreover, the coefficient of determi-
nation is

R2 = m2 t2 − t2

y2 − y2
=

121
100

·
15
2 − 100

42

21
4 − 49

42

=
121
100

· 20
35

=
121
175

≈ 0.691

Finally, the minimized square error is also easily computed:

∑ e2
i = ∑(ŷi − yi)

2 = (3.4 − 4)2 + (2.3 − 1)2 + (1.2 − 2)2 + (0.1 − 0)2 = 2.7

While linear regression is undoubtedly useful it has obvious weaknesses, for instance:

• Outliers massively influence the regression line. Dealing with this problem is complicated;
there are other approaches and definitions for a best-fitting straight line. For a simple approach
with very large data sets, simply throw out the top and bottom 10% of data values! It is impor-
tant to remember that any approach to modelling requires some subjective choice.

• If the data is ‘not very linear’ then the regression model will not be of much use. There are
several ways around this. Sometimes data looks more linear after some manipulation, particu-
larly by exponential or logarithmic functions. We’ll think about this a bit later. For the present
we consider how to find polynomial models for data, though to do this without losing sanity
points requires a little detour into matrix multiplication.
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Matrix Multiplication and Linear Regression

This is a very quick primer on how to multiply matrices. It is very easy if you are comfortable with
the dot product! As an application, we obtain a useful way to think about the system of equations
involved in linear regression which extends easily to polynomial regression.

• An m × n matrix is an array of mn numbers with m rows and n columns. Here, for example, is
a 3 × 4 matrix, 3 2 0 0

−2 1
2 −1 0

0 4 1 −1


• Suppose A is m × n and B is n × r. If aij is the entry in the ith row, jth column of A (and similarly

for B), then the product AB is the m × r matrix with ikth entry

(AB)ik =
n

∑
j=1

aijbjk = ai1b1k + ai2b2k + · · ·+ ainbnk

Equivalently, if we write A =

 aT
1
...

aT
n

 in terms of its n rows, and B = (b1 . . . bn) in terms of

its n columns, then the ith row jth column of AB is the dot product ai · bj. This is often said as
“multiply along the row and down the column.” For example(

3 2 0
−2 1 3

) 1 2 2 0
−2 −1 3 1
0 5 −1 1

 =

(−1 4 12 2
−4 12 −4 4

)

where the 1st row 2nd column of the product was computed via

(
3 2 0

) 2
−1
5

 = 3 · 2 + 2(−1) + 0 · 5 = 4

• The m × m identity matrix has all of its entries zero, except down the main diagonal, all of whose
entries are 1. For instance, the 3 × 3 identity matrix is

I =

1 0 0
0 1 0
0 0 1


The identity behaves very like the number 1: for any matrix A, we have IA = AI = A.

• A square matrix A has an inverse A−1 if AA−1 = A−1A = I. For 2 × 2 matrices there is an
explicit formula, provided ad − bc ̸= 0,(

a b
c d

)−1

=
1

ad − bc

(
d −b
−c a

)
Explicit formulas can be found for larger matrices, though they aren’t practically useful. We
won’t explicitly invert anything beyond 2 × 2. Just know that computers are expert at this!
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How does this relate to linear regression? The system of equations in Theorem 3.3 can be written in
as a 2 × 2 matrix problem! For a data set with n pairs, the coefficients m, c satisfy(

∑ t2
i ∑ ti

∑ ti n

)(
m
c

)
=

(
∑ tiyi

∑ yi

)
This is nice because we can decompose the square matrix on the left as the product of a simple matrix
and its transpose (switch the rows and columns);

(
∑ t2

i ∑ ti

∑ ti n

)
=

(
t1 t2 · · · tn
1 1 · · · 1

)
t1 1
t2 1
...

...
tn 1

 = PTP

We can also view the right side as the product of PT and the column vector of output values yi:

(
∑ tiyi

∑ yi

)
=

(
t1 t2 · · · tn
1 1 · · · 1

)y1
...

yn

 = PTy

A little theory tells us that if at least two of the ti are distinct, then the matrix PTP is invertible;4 there
is a unique regression line whose coefficients may be found by taking the matrix inverse(

m
c

)
= (PTP)−1PTy =⇒ ŷ = mt + c = (t 1)

(
m
c

)
= (t 1)(PTP)−1PTy

We can also easily compute the prediction vector of values ŷi given ti:

ŷ =

(
t1 t2 · · · tn
1 1 · · · 1

)(
m
c

)
= P(PTP)−1PTy

and therefore the squared error ∑ e2
i = ∑ |ŷi − yi|2 = ||ŷ − y||2, which leads to an alternative expres-

sion for the coefficient of determination

R2 =
||ŷ||2 − ny2

||y||2 − ny2

where ||y|| is the length of a vector.
4For those who’ve studied linear algebra, P and PT P have the same null space and thus rank, since

Px = 0 =⇒ PT Px = 0 and PT Px = 0 =⇒ xT PT Px = 0 =⇒ |Px| = 0 =⇒ Px = 0

For linear regression, having two distinct ti values means P has rank (2); so does PT P which is therefore invertible.
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Examples 3.6. 1. We revisit the previous example in this language

P =


t1 1
t2 1
...

...
tn 1

 =


1 1
2 1
3 1
4 1

 =⇒ PTP =

(
1 2 3 4
1 1 1 1

)
1 1
2 1
3 1
4 1

 =

(
30 10
10 4

)

from which(
m
c

)
= (PTP)−1PTy =

(
30 10
10 4

)−1 (1 2 3 4
1 1 1 1

)
4
1
2
0


=

1
30 · 4 − 102

(
4 −10

−10 30

)(
12
7

)
=

1
20

(
48 − 70

−120 + 210

)
=

1
10

(−11
45

)
The prediction vector given inputs ti is therefore

ŷ = P
(

m
c

)
=

1
10

(
1 2 3 4
1 1 1 1

)(−11
45

)
=

1
10


34
23
12
1


from which the coefficient of determination is, as before

R2 =
||ŷ||2 − 4y2

||y||2 − 4y2
=

1
100 (342 + 232 + 122 + 12)− 4 · 72

42

(42 + 11 + 22 + 02)− 4 · 72

42

=
121
175

2. Given the data set {(3, 1), (3, 5), (3, 6)}, we have P =
( 3 1

3 1
3 1

)
and PTP =

(
27 9
9 3

)
which isn’t invertible: 27 · 3− 9 · 9 = 0. The

linear regression method doesn’t work!
It is easy to understand this from the picture. Since the three
data points are vertically aligned, any line minimizing the
sum of the squared errors must pass through the average
(3, 4). It could however, have any slope!

0
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6y
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t

It is unnecessary to use the matrix approach; particularly if you have to compute a small example
you should use whichever approach you feel most comfortable with. There are, however, further
advantages to the matrix approach.

• Computers store and manipulate data in essentially matrix format, so this approach is computer-
ready; essential for large data set which would be prohibitive to work with manually.

• Suppose you repeat an experiment several times, taking measurements yi at times times ti.
Since it depends only on the t-data, you need only compute the matrix (PTP)−1PT once; this
makes it very efficient to compute the regression line for each experiment run.

• The method is easily generalizable to higher-degree polynomial regression. . .
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Polynomial Regression

The pattern here works in almost the same way as for linear regression, you just need more terms.
We work through the approach for a quadratic approximation.
Suppose we have a data set {(ti, yi) : 1 ≤ i ≤ n} and that we desire a best-fitting quadratic polyno-
mial ŷ = at2 + bt + c which minimizes the sum of the vertical errors

S = ∑ e2
i = ∑(at2

i + bti + c − yi)
2

This looks terrifying, but can be attacked as before using differentiation: to minimize the sum of the
squared errors, we need all three of the derivatives of S with respect to the variables a, b, c to be zero.

∂S
∂a

= 2
n

∑
i=1

t2
i (at2

i + bti + c − yi) = 2
n

∑
i=1

at4
i + bt3

i + ct2
i − t2

i yi = 0

∂S
∂b

= 2
n

∑
i=1

ti(at2
i + bti + c − yi) = 2

n

∑
i=1

at3
i + bt2

i + cti − tiyi = 0

∂S
∂c

= 2
n

∑
i=1

at2
i + bti + c − yi = 0

which is equivalent to a system of equations for a, b, c:
a ∑ t4

i + b ∑ t3
i + c ∑ t2

i = ∑ t2
i yi

a ∑ t3
i + b ∑ t2

i + c ∑ ti = ∑ tiyi

a ∑ t2
i + b ∑ ti + cn = ∑ yi

This looks fairly nasty, and could be rephrased in terms of averages as before (e..g. t4 = 1
n ∑ t4

i ).
Instead, observe that we have the same matrix problem as previously, just with an n × 3 matrix P:

PTP

a
b
c

 = PTy where P =

t2
1 t1 1
...

...
...

t2
n tn 1

 and y =

y1
...

yn


It can be checked that, provided at least three of the ti are distinct, then the matrix PTP is invertible5

and there is a unique least-squares quadratic minimizer

ŷ = at2 + bt + c = (t2 t 1)

a
b
c


The predictions ŷi = ŷ(ti) therefore form a vector ŷ = P

( a
b
c

)
= P(PTP)−1PTy, and the coefficient of

determination may be computed as previously.

5Remember that the goal of this class is not to practice inverting 3 × 3 matrices. This is what computers are for! The
point is to know that it can easily be done.
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Example 3.7. Suppose we have the data

{(ti, yi)} = {(1, 2), (2, 5), (3, 7), (4, 4)}
We compute both the linear an quadratic regression curves.

1. To find the best-fitting least-squares line, we use the same P (and thus PTP) from the previous
example:

(
m
c

)
= (PTP)−1PTy =

(
30 10
10 4

)−1 (1 2 3 4
1 1 1 1

)
2
5
7
4


=

1
10

(
2 −5
−5 15

)(
49
18

)
=

(
0.8
2.5

)
which yields ŷ = 0.8t+ 2.5. The predicted values and the coefficient of determination are easily
found:

ŷ =

(
1 2 3 4
1 1 1 1

)(
0.8
2.5

)
=


3.3
4.1
4.9
5.7

 , R2 =
84.2 − 81
94 − 81

≈ 0.2462

The linear model is not very accurate.

2. Now compute the quadratic model:

P =


1 1 1
4 2 1
9 3 1

16 4 1

 =⇒ PTP =

1 4 9 16
1 2 3 4
1 1 1 1




1 1 1
4 2 1
9 3 1

16 4 1

 =

354 100 30
100 30 10
30 10 4



=⇒
a

b
c

 = (PTP)−1PT


2
5
7
4

 =

354 100 30
100 30 10
30 10 4

−1 149
49
18

 =

−1.5
8.3
−5


so we have the model ŷ = −1.5t2 + 8.3ty − 5. To quantify its accuracy, compute

ŷ = P

−1.5
8.3
−5

 =


1.8
5.6
6.4
4.2


R2 =

||ŷ||2 − 4y2

||y||2 − 4y2
=

93.2 − 81
94 − 81

≈ 0.9385

The quadratic model is far superior to the linear.
0
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That a quadratic model would provide a significantly better fit should have been obvious simply by
plotting the data points. If this were real world data, there might have been other clues; perhaps the
data is related to the trajectory of a object, which we know to follow a parabola!

We can repeat the approach for cubic, and higher-order, polynomials. Everything stays the same
except for the matrix P, which gets extra columns: for a degree d polynomial fitting n data points, P
will be an n × (d + 1) matrix whose first column contains td

i . This is rarely useful in practice, and
might even be counter-productive.

Returning to the example, there is in fact a unique cubic polynomial passing through the four data
points6

ŷ =
1
6
(−4t3 + 21t2 − 17t + 12)

The best-fitting cubic polynomial to the data therefore has no error. This is likely a bad interpretation
of a real-world situation, where the values yi are likely inaccurate measurements from an experi-
ment. You shouldn’t expect observed data to be perfect; the ‘perfect’ cubic model not only takes
much longer to compute, but it is likely only amplifying whatever noise was present in the original
measurements yi.

We’ll return to regression later once we’ve thought about exponential functions.

6Compare with a unique line through two points, and a unique quadratic through three.
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