
4 Exponential and Logarithmic Functions and Models

One of the most basic models is that of natural growth/decay; the rate of change of a quantity is pro-
portional to the quantity itself. Written using differential equations, this is

dy
dx

= ky

where k is a constant; if k > 0 this is the natural growth equation, if k < 0 the natural decay equation.
This is commonly encountered when modelling populations, since the rate of growth of an otherwise
unconstrained population is proportional to its size (twice the people, twice the babies. . . ).

We know what solutions to the natural growth model look like because we can sketch them: if the
value y(x) is known, the equation tells us the value of its derivative y′(x) = ky(x) and thus the direction
in which the solution curve is travelling.

Exercise Consider the simplest natural growth equation with k = 1:

dy
dx

= y

At each point (m
2 , n

2 ) where −4 ≤ m, n ≤ 4, we draw an arrow whose
slope equals y. The arrows indicate the direction of any solution curve
passing through the point. The upshot is that the arrow are tangent to
any solution. The green curve appears to be a solution; sketch some
others.
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If the title of the section didn’t give it away, you should recognize the above graph; it looks suspi-
ciously exponential. . . Why does this make sense?

Definition 4.1. Let a > 0 be constant. The exponential function with base a is f (x) = ax.

Recall the exponential laws:

ax+y = axay, ax−y =
ax

ay , (ax)r = arx

For us, the crucial property is that of having a proportional derivative.

Theorem 4.2. The rate of change of f (x) = ax is proportional to f (x). Specifically,

f ′(x) = lim
h→0

ax+h − ax

h
= ax lim

h→0

ah − 1
h

so that f (x) = ax satisfies the natural growth/decay equation dy
dx = ky with proportionality constant

k = f ′(0) = lim
h→0

ah − 1
h

1



Exercises 1. Estimate the proportionality constant k = lim
h→0

ah − 1
h

for several values of a by using

your calculator to complete the following table to 3 d.p. for the given values of h:

a 2 2.5 2.7 2.75 3 5

a0.1−1
0.1 0.718 0.960 1.044 1.065 1.161 1.746

a0.01−1
0.01 0.696

a0.001−1
0.001 0.693

What is happening to the proportionality constant as a increases?

2. Show that the proportionality constant for 1
a is negative that for a: that is,

lim
h→0

( 1
a )

h − 1
h

= − lim
h→0

ah − 1
h

If you did the exercise properly, it should appear as if there is a special number somewhere between
2.7 and 2.75 for which the proportionality constant is k = 1.

Definition 4.3. The value e = 2.71828 . . . is the unique real number1such that lim
h→0

eh−1
h = 1.

The natural exponential function exp(x) = ex has derivative d
dx ex = ex.

The green curve plotted above is the natural exponential function. Of course there are many other
solutions to this equation. Indeed we can now easily verify solutions to the general equation using
the chain rule: for any constants c, k,

y = cex =⇒ dy
dx

=
d

dx
cekx = ckekx = ky

In fact the converse also holds:2

Theorem 4.4. The solutions to the natural growth equation dy
dx = ky are precisely y(x) = y0ekx

where y0 = y(0) is the initial value.

Before seeing some examples, we need one further ingredient. Since e > 1 > 0, the exponential
function satisfies the following properties:

lim
x→∞

ex = 0, lim
x→∞

ex = ∞,
d

dx
ex = ex > 0

whence exp : R → (0, ∞) is an increasing function with dom(exp) = R and range(exp) = (0, ∞). It
is therefore invertible.

1An old joke suggests that if aliens were to land on Earth, they’d have to understand e given the technology they’d
require to get here. Like π and

√
2, the exponential constant e is an irrational number, implying that its decimal representa-

tion continues forever without any eventually repeating pattern. There isn’t the same geeky fascination with memorizing
its digits as there is with π. Neither is there an ‘e-day’ (Feb 7th, Jan 27th anyone?), perhaps because the obvious related
consumable is best avoided. . .

2For a discussion of the converse and why it needs a bit of thought, take a differential equations class!
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Definition 4.5. The natural logarithm ln : (0, ∞) → R is the
inverse function to the natural exponential. That is,

• For any x > 0, eln x = x;

• For any x ∈ R, ln ex = x.
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By the exponential laws, every exponential function can be expressed this way

ax = (eln a)x = ex ln a

Exercises 1. y = ax satisfies the natural growth equation dy
dx = ky; what is the value of k?

2. If a > 0 and a ̸= 1, verify that loga x := ln x
ln a is the inverse function of y = ax. This is the logarithm

with base a; the natural logarithm has base e.

Unless the base is very simple, say a = 2, we typically stick to using e. The basic properties of the
logarithm should be familiar to you; for instance

eln x+ln y = eln xeln y = xy = eln xy =⇒ ln xy = ln x + ln y

Exercises 1. Verify the remaining logarithm laws:

ln
x
y
= ln x − ln y, ln xr = r ln x

2. Logarithms were invented not for calculus but to simplify the multiplication of large numbers.
In the pre-calculator era, it was common for students to carry a book of log tables for this pur-
pose. Look up a log table on the internet and investigate how to use it.

3. By differentiating the expression eln x = x, verify that d
dx ln x = 1

x .

Example 4.6. A population of rabbits doubles in size every 6 months. If there are 10 rabbits at the
start of the year, how many rabbits do we expect there to be after 9 months, and how rapidly is the
population increasing (births/month).

Our model for the population of rabbits after t months is

P(t) = 10 · 2t/6

After 9 months the population will be approximately P(9) =
10 · 23/2 = 20

√
2 ≈ 28.28 rabbits. Moreover,

d
dt

P(t) =
d
dt

10e
t
6 ln 2 =

10 ln 2
6

2t/6

=⇒ P′(9) =
10 ln 2

6
23/2 ≈ 3.27 rabbits/month

0
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Exercises 1. What mistakes might a student make if they were given the previous example? Why
might they obtain the incorrect answer of 25 rabbits?

2. What clues were in the previous example that made you think an exponential model was a
good idea?

Sometimes it is not so obvious that an exponential model is the way forward. One early approach to
e, courtesy of Jacob Bernoulli (1683), was to think about the problem of compound interest.

Example 4.7. You deposit $1 in an account paying 100% interest per year (nice account!). Bernoulli
observed that you will end up with different sums of money depending on when and how the interest
is paid.

1. If the interest is paid once at the new year, then you finish with $2.

2. If half the interest 50¢ is paid at six months, then the balance $1.50 earns 100% per year interest
for the rest of the year, then you’ll finish with 1.5 · 1.50 = $2.25.

3. If the interest is paid in four installments we have the following table of transactions (data is
rounded to the nearest cent)

Date Interest Paid Balance
1st Jan — $1
1st Apr 25¢ $1.25
1st July 1

4 · 1.25 = 31¢ $1.56
1st Sept 1

4 · 1.56 = 39¢ $1.95
Year’s end 1

4 · 1.95 = 49¢ $2.44

A shorter calculation for the end of the year balance is $1.254 =
(
1 + 1

4

)4
.

4. In general, if the interest is paid over n equally spaced intervals, the end of year balance would
be $

(
1 + 1

n

)n
. Here are a few examples where we’ve rounded things to 5 decimal places:

Frequency End of year balance

Every month $
(
1 + 1

12

)12
= 2.61304

Every day $
(
1 + 1

365

)365
= 2.71457

Every hour $
(
1 + 1

8760

)8760
= 2.71813

Every second $
(
1 + 1

31536000

)31536000
= 2.71828

It certainly appears as if you cannot beat $e, no matter how often you pay the interest!

In fact this is a theorem:

e = lim
n→∞

(
1 +

1
n

)n

While it is quite a lot of work to show that this is equivalent to the differential equation definition,
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it again shows that e arises very naturally. It is common in finance to compute compound interest
continuously; a continuous interest rate of r% per year results in an initial balance of y0 becoming

y(t) = y0e
rt

100

after t years. There are several ‘advantages’ to this.

1. The balance of an account can be found easily at any time.

2. All the power of calculus can be brought to bear.

3. A company can make an interest rate appear higher (if a savings account) or lower (if a loan)
by choosing how to quote the interest rate. For instance, a loan continuously compounded at
7% has an effective interest rate3 of e0.07 − 1 = 7.25%; if you borrow $100,000, you’ll owe $107,250
at the end of the year, not the $107,000 you might have expected!

Exercise Which of the following would you prefer for a savings account?

• 5% interest paid continuously.

• 5.05% paid monthly.

• 5.1% paid at the end of the year.

Modifying the Natural Growth Model

An obvious modification to the model involves adding a constant to the solution:

y(t) = a + bekt =⇒ dy
dt

= kbekt = k(y − a)

In this case the rate of change is proportional to the difference between y(t) and some fixed value a. If
k > 0, then solutions will approach

Exercises 1. If c, k, M are constants, verify that y(x) = M + ce−kt solves the differential equation

dy
dt

= k(M − y)

2. A commonly encountered model based on this equation is Newton’s Law of Cooling: the temper-
ature T(t) of a body is assumed to change at a rate proportional to the difference between its
temperature and that of its surroundings Ts. Find the differential equation that describes this
situation.

3. A cup of coffee is left outside on a warm day when the surrounding temperature is 90°F. Sup-
pose the initial temperature of the coffee is 200°F and that its temperature after 2 minutes is
170°F. Find the temperature as a function of time.

3In practice, mortgage companies often quote an interest rate which they use to compound monthly. For example, if the

quoted rate is 7%, then the effective interest rate per year is
(

1 + 0.07
12

)12
− 1 = 7.229%. By law, they have to quote this

higher effective APR somewhere, though it is unlikely to be as prominent as the lower simple APR.
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4. A population of 10,000 people is exposed to a novel virus. The best scientific understanding is
that 1% of the susceptible population per day contracts the virus, the effects of the illness lasts
ten days, after which a victim recovers and is immune from reinfection.

(a) Model the evolution of the sick and immune populations over the next 180 days.
(b) The health department has n vaccines available. Discuss how it should deploy these. Is

the goal to eradicate the virus as rapidly as possible? What if it wants to do this while
using fewer doses? Discuss the following strategies; for simplicity, assume the vaccines
are 100% effective and work instantly.

i. Use all the vaccine immediately.
ii. Wait a while until more people are immune, then use all vaccines on at risk people.

iii. Vaccinate a small number of at risk people per day.
iv. Wait until there are only n at risk people left, then vaccinate them all.

This is easier using a spreadsheet. We can also approach the problem analytically.

Let r(t), s(t) and i(t) be the at risk, sick and immune populations respectively. If t is measured
in days, then

r(t + 1) = 0.99r(t), r(0) = 10000 =⇒ r(t) = 10000 · 0.99t

The sick population is the sum of the previous 10 days’ decrease in the at risk population:

s(t) =

{
r(0)− r(t) = 10000(1 − 0.99t) if t ≤ 10
r(t − 10)− r(t) = 10000(0.99−10 − 1)0.99t = 1057 · 0.99t if t > 10

The immune population is the difference between these and the total population

i(t) = 10000 − r(t)− s(t) =

{
0 if t ≤ 10
10000 − 11057 · 0.99t if t > 10

After 180 days, we have

r(180) = 1048, s(180) = 111, i(180) = 8841

The other situations can also be analytically described. Here are graphs of what happens under
the first three vaccination campaigns if n = 6000.
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The Logistic Model Our final basic exponential model is one of the most commonly encountered.

• When a population y is very small, we want it to grow
naturally dy

dt ∝ y.

• As with Newton’s law of cooling, we want y to ap-
proach a positive value M as t → ∞.

The logistic differential equation

dy
dt

= ky(M − y)

0

y

0
t

M

dy
dt < 0

dy
dt > 0

accomplishes both our requirements when k, M are positive constants. In such a situation, M is often
referred to as the carrying capacity of the environment.

Exercise If y0 = y(0), verify that y(t) =
y0M

y0 + (M − y0)e−kMt solves the logistic equation.

You can do this directly or, if you’ve studied differential equations, try separation of variables!

Example 4.8. A brewer pitches 100 billion yeast cells into a starter wort with the goal of growing it
to 200 billion cells. After one hour, the wort contains 110 billion cells.

(a) How long must the brewer wait if we use a natural growth model?

(b) How long must the brewer wait if we use a logistic model where we also assume that the wort
contains enough sugar to grow 250 billion yeast cells?

(c) For both models, what is the maximum growth rate and at what time does it occur?

Let P(t) be the yeast population in billions at time t hours. We therefore have P(0) = 100 and
P(1) = 110, and want to find t such that P(t) = 200.

(a) The model is dP
dt = ky, which has solution

P(t) = P0ekt = 100ekt

Evaluating at t = 1 yields 1.1 = ek whence

P(t) = 100(1.1)t =⇒ t =
ln(0.01P)

ln 1.1
≈ 7.27 hours

(b) The model is dP
dt = ky(250 − y), with solution

P(t) =
25000

100 + (250 − 100)e−250kt =
500

2 + 3e−250kt

0

100

200

300P

0 3 6 9 12
t

Evaluating at t = 1 yields

110 =
500

2 + 3e−250k =⇒ e250k =
33
28
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whence

P(t) =
500

2 + 3
( 28

33

)t =⇒ t =
ln 6
ln 33

28

≈ 10.91 hours

(c) For the natural growth model, the growth rate is always increasing. It is maximal at the moment
the population hits 200 billion and equals

P′(t) = (ln 1.1)P(t) = 200 ln 1.1 ≈ 19.06 billion cells per hour

For the logistic model, the maximum growth rate happens when the population is half way to
carrying capacity: i.e. at 125 billion cells. We therefore have a maximum growth rate of

P′(t) = 1252k =
1252

250
ln

33
28

=
125

2
ln

33
28

≈ 10.27 billion cells per hour

at time t = ln 3
2

ln 33
28

≈ 2.47 hours.

The logistic model is easily generalized.

Example 4.9. The population P(t) (in 1000’s) of fish in a lake obeys the logistic equation

dP
dt

=
1

16
P(10 − P)

where t is measured in months. The first graph shows how
the population recovers over a year if it starts at 2500 fish.
Now suppose 1000 fish are ‘harvested’ from the lake each
month. The new model is then

dP
dt

=
1

16
P(10 − P)− 1 = − 1

16
(P2 − 10P + 16)

= − 1
16

(P − 2)(P − 8)

Substituting Q = P − 2, this is again logistic!

dQ
dt

=
1
16

Q(6 − Q)

0
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Provided the initial population P(0) = Q(0) + 2 is greater than 2000 fish, we expect the population
to eventually stabilize at 8000 fish, though it takes a long time to get close to this if we start, as in the
second graph, with only a little over 2000 fish.

8



Exponentials and real-world data

Exponentials can be combined with our method for finding best-fitting regression lines in several
ways. Here are a couple of possibilities for modelling a data set {(ti, yi)}.

Log plots If you suspect an exponential model ŷ = abt = emt+c then taking logarithms

ln ŷ = mt + c

results in a linear relationship between ln ŷ and t.

Log-log plots If you suspect a power function model ŷ = atm then taking logarithms

ln ŷ = m ln t + ln a

results in a linear relationship between ln y and ln t.

Given a data set {(ti, yi)}, simply plot ln yi against either ti or ln ti and see which looks most linear!
A weakness of these approaches is that the errors are not treated equally by the logarithmic trans-
formation. When a spreadsheet is asked to compute with such a model, the value of R2 it typically
reports is that of the underlying linear model.

Example 4.10. A population of rabbits is measured every two months resulting in the data set

ti 0 2 4 6 8 10
Pi 5 7 10 14 19 28

Since this is population growth, we expect an exponential model P(t) = emt+c. After taking loga-
rithms of the population values, the data is very close to linear. Now perform a linear regression (this
is much easier using a spreadsheet—play with it!).

Data average
ti 0 2 4 6 8 10 5
t2
i 0 4 16 36 64 100 36.67

Pi 5 7 10 14 19 28 13.83
ln Pi 1.61 1.95 2.30 2.64 2.94 3.33 2.46

ti ln Pi 0 3.89 9.21 15.83 23.56 33.32 14.30

m =
t ln P − t · ln P

t2 − t2 =
14.30 − 5 · 2.46

36.67 − 52 = 0.171

c = ln P − mt = 3.46 − 0.171 · 5 = 1.609

which yields the exponential model

ŷ = e0.171t+1.609 = 4.998(1.186)t ≈ 5(1.979t/4)

This is very close to doubling every 4 months. In fact the approx-
imate doubling time for the population is T = ln 2

m = 4.06 months.
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Exercises The average weight and length of a fish species measured at different ages is as follows:

Age (years) Length(cm) Weight (g)
1 5.2 2
2 8.5 8
3 11.5 21
4 14.3 38
5 16.8 69
6 19.2 117
7 21.3 148
8 23.3 190
9 25.0 264
10 26.7 293
11 28.2 318
12 29.6 371
13 30.8 455
14 32.0 504
15 33.0 518
16 34.0 537
17 34.9 651
18 36.4 719
18 37.1 726
20 37.7 810

0
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800w
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1. Do you think an exponential model is a good
fit for this data? Take logarithms of the weight
values and use a spreadsheet to obtain a model
ŵ = exp(ml + c) where w, l are the weight and
length respectively.

2. What happens if you try a log-log plot? Do you
get a more accurate model? Why do you think
this is?

Kepler’s Third Law

In the early 1600’s Johannes Kepler used data for the planets to empirically derive his three laws of
planetary motion, the third of which relates the orbital period T of a planet (how long it takes to go
round the sun), to its average distance r from the sun.

Planet T (years) r (millions km)
Mercury 0.24 57.9

Venus 0.61 108.2
Earth 1 149.6
Mars 1.88 228.0

Jupiter 11.86 778.5
Saturn 29.46 1433.3
Uranus 84.01 2872.6

Neptune 164.79 4493.6
0

40

80

120

160T

0 2000 4000
r

The table shows the data for all of the planets (Kepler did not have this for Uranus and Neptune).
Use a spreadsheet to analyze this data and find a model relating the period to the mean radius of a
planet. Compare what you find with the statement of Kepler’s third law.
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