
3 Exponential and Logarithmic Functions & Models

Introducing exponential functions without calculus presents a significant challenge. The simplest
approach is as a short-hand notation for repeated multiplication: for instance

a5 = a · a · a · a · a

analogous to how multiplication represents repeated addition

5a = a + a + a + a + a

The problem with this approach is that it doesn’t help you understand what should be meant by, say,
a3/4 or a

√
2: multiplying something by itself ‘

√
2 times’ sounds8 insane!

To rigorously address this problem requires continuity and other ideas surrounding the foundations
of calculus which you’ll encounter in upper-division analysis; topics unsuitable for this course. In-
stead, we assume some familiarity with exponential functions via introductory calculus, where they
are unavoidable and offer two ways to introduce exponential functions and e via modelling.

3.1 The Natural Growth Model

A basic model for any variable quantity is that its rate of change be proportional to the quantity itself. This
idea necessarily needs some calculus; as a differential equation,

dy
dx

= ky

where k is a constant; if k > 0 this is the natural growth equation, if k < 0 the natural decay equa-
tion. This is commonly encountered when modelling population growth; an otherwise unconstrained
population seems like its growth rate should be proportional to its size (twice the people, twice the
babies. . . ). This model is hugely applicable, since population can refer to essentially any quantifiable
value: people, bacteria, money, reagents in a chemical/nuclear reaction, etc.

Example 3.1. The simplest natural growth equation has k = 1:

dy
dx

= y

If a point (x, y) lies on a solution curve, then the differential equation tells
us the direction of travel of the solution. We may visualize this by drawing
an arrow with slope dy

dx = y; the arrows are tangent to any solution.9 You
should easily be able to sketch some other solution curves.
You should, of course, recognize the graph. . . −2
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8The same issue arises for multiplication: 3
√

2 =
√

2 +
√

2 +
√

2 is relatively easy for grade-school students to under-
stand, but how would you convince someone what π

√
2 means?

9A similar approach is available for any first-order differential equation dy
dx = F(x, y): the equation defines its slope field

(arrows), to which solution curves must be tangent.
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Definition 3.2. Let a > 0 be constant. The exponential function with base a is f (x) = ax.

Recall the exponential laws:

ax+y = axay ax−y =
ax

ay (ax)r = arx

For modelling, the crucial property of exponential functions is that they have proportional derivative.

Theorem 3.3. The rate of change of f (x) = ax is proportional to f (x). Specifically,

f ′(x) = lim
h→0

ax+h − ax

h
= ax lim

h→0

ah − 1
h

so that f (x) = ax satisfies the natural growth/decay equation dy
dx = ky with proportionality constant

k = f ′(0) = lim
h→0

ah − 1
h

Example 3.4. We estimate the proportionality constant k = lim
h→0

ah − 1
h

to 3 d.p. using a calculator for
four values of h:

a 2 2.5 2.7 2.75 3 5

a0.1−1
0.1 0.718 0.960 1.044 1.065 1.161 1.746

a0.01−1
0.01 0.696 0.921 0.998 1.017 1.105 1.622

a0.001−1
0.001 0.693 0.917 0.994 1.012 1.099 1.611

a0.0001−1
0.0001 0.693 0.916 0.993 1.012 1.099 1.610

What is happening to the proportionality constant as a increases? As h decreases?

It appears as if there is a special number somewhere between 2.7 and 2.75 for which the proportion-
ality constant is precisely k = 1.

Definition 3.5. The value e = 2.71828 . . . is the unique real number such that lim
h→0

eh−1
h = 1.

The natural10 exponential function exp(x) = ex has derivative d
dx ex = ex.

10Natural here means unavoidable: an old cliche suggests that if aliens were to land on Earth, they’d have to understand e
given the technology they’d require to get here. Of course they’d likely use a different symbol; ours comes from Leonhard
Euler around 1728. Like π and

√
2, the constant e is an irrational number: its decimal representation contains no repeating

pattern. There isn’t the same geeky fascination with memorizing the digits of e as there is with π, neither is there an ‘e-day’
(Feb 7th at 6:28 p.m. anyone?).
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The function f (x) = 1
2 ex is plotted in Example 3.1. Of course there are many other solutions to the

natural growth equation dy
dx = y: for any constants c, k,

y = cekx =⇒ dy
dx

=
d

dx
cekx = ckekx = ky

In fact the converse also holds; for the details, take a differential equations course!

Theorem 3.6. The solutions to the natural growth equation dy
dx = ky are precisely the functions

y(x) = y0ekx = y0 exp(kx)

where y0 = y(0) is the initial value.

Example 3.7. A Petri dish contains a population P(t) of bacteria satisfying the natural growth equa-
tion dP

dt = 0.5P where time is measured in weeks from the start of the year.

If P(0) = 100 bacteria, then P(t) = 100e0.5t. Specifically, at the
end of January (4 3

7 weeks) one expects there to be

P( 31
7 ) = 100 exp 31

14 = 915 bacteria

Note that the exponential doesn’t return 915 exactly; this is only
an approximation. Models like this work best for large popula-
tions where integer rounding errors are of minimal concern.
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Compound Interest and the Discovery of e

The first description of e came in 1683 when Jacob Bernoulli tried to model the growth of money in a
hypothetical bank account. We give a modernized version of his approach.

Example 3.8. $1 is deposited in an account paying 100% interest per year (nice!). Bernoulli observed
that the money in the account at the end of the year depends on when the interest is paid.

• If the interest is paid once at the end of the year (this is called simple interest), you’ll have $2.

• If half the interest (50¢) is paid at six months, then the balance ($1.50) earns 1
2 · 1.50 = 75¢

interest for the rest of the year; you’ll finish the year with $2.25 in the account.

• If the interest is paid in four installments, we have the following table of transactions (data is
rounded to the nearest cent)

Date Interest Paid Balance
1st Jan — $1
1st Apr 25¢ $1.25
1st July 1

4 · 1.25 = 31¢ $1.56
1st Oct 1

4 · 1.56 = 39¢ $1.95
New Year 1

4 · 1.95 = 49¢ $2.44

More succinctly, the year-end balance is
(
1 + 1

4

)4
= $2.44.
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• More generally, if the interest is paid over n equally spaced intervals, the account balance at the
end of the year would be $

(
1 + 1

n

)n
. Here are a few examples rounded things to 5 d.p.

Frequency Balance after 1 year ($)

Every month
(
1 + 1

12

)12
= 2.61304

Every day
(
1 + 1

365

)365
= 2.71457

Every hour
(
1 + 1

8760

)8760
= 2.71813

Every second
(
1 + 1

31536000

)31536000
= 2.71828

As the frequency of payment increases, it appears as if the balance is increasing to $e. . .

In fact this is a theorem, though it requires significant work (beyond this class) to prove it:

e = lim
n→∞

(
1 +

1
n

)n

and more generally ex = lim
n→∞

(
1 +

x
n

)n

This again shows that e arises very naturally.

Simple, Monthly & Continuous Interest In finance, interest is typically computed in one of three
ways. In each case we describe the result of investing $1 at an interest rate of r% = r

100 per year.

Simple interest You are paid r
100 dollars at the end of the year. Your invested dollar becomes 1 + r

100
dollars.

Monthly interest Each month you are paid r
12 % of your current balance. This amounts to a balance

of (1 + r
1200 )

12 dollars at year’s end. The period need not be monthly: if interest is paid in n
installments, the balance would be (1 + r

100n )
n.

Continuous interest After t years (can be any fraction of a year!) your dollar-balance is

e
rt

100 = exp
rt

100
= lim

n→∞

(
1 +

rt
100n

)n

Example 3.9. A bank account earns 6% annual interest paid monthly. To what simple interest rate
does this correspond? Would you perfer an account paying 6% continuously?
At the end of the year, $1 becomes

(1 + 0.0612)12 = 1.00512 ≈ 1.06168 . . .

corresponding to a simple interest rate of 6.17%. By cobntrast, 6% continuous interest would result
in your dollar becoming e6/100 ≈ 1.06184, corresponding to a (marginally) higher simple interest rate
of 6.18%. You should prefer this, particularly if you have a lot of money to invest! The difference is
more noticable with an investment of $1000 over ten years:

1000 × 1.005120 = $1819.40 versus 1000e0.6 = $1822.12
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There are several reasons for these varying approaches, not all of them consumer-friendly:

1. Simple interest is simple! It is easy to understand and compute, but hard to decide how or even
whether to compute interest for parts of a year.

2. Monthly interest fits with most paychecks, so is sensible for loans, particularly mortgages.

3. Continuous interest allows the balance of an account to be found easily at any time, even be-
tween interest payment dates. It is also much easier to apply mathematical analysis (calculus).

4. A company can make an interest rate appear higher (if a savings account) or lower (if a loan) by
choosing which way to quote an interest rate.

Example 3.10. A bank quotes you a loan with a continuously compounded interest rate of 7%. If
you borrow $100,000, then at the end of the year you’ll owe

100000e0.07 = $107, 250.82

not the $107,000 you might have expected! This corresponds to a simple interest rate (one payment
at the end of the year) of 7.25%.11

Exercises 3.1. 1. Draw a slope field for the natural decay equation dy
dx = − 1

3 y and use it to sketch
the solution curve with initial condition y(0) = 6. What is the function y(x) in this case?

2. Which of the following would you prefer for a savings account, and why?

• 5% interest paid continuously.
• 5.05% compounded monthly.
• 5.1% paid at the end of the year.

3. You invest $1000 in an account that pays 4% simple interest per year.

(a) How much money will you have after 5 years?
(b) If you close the account after 2 years and 3 months, the bank needs to decide how much

interest to credit you with. Do this is two ways (the answers will be different!):
i. Compute using the simple interest rate for 2.25 years.

ii. Suppose that interest is paid at 4% for all completed years and then at 4% paid
monthly for any completed months of an incomplete year. Find the balance of the
account at closing.

4. See if you can explain why the proportionality constant for
( 1

a

)x
is negative that for ax: that is,

lim
h→0

( 1
a )

h − 1
h

= − lim
h→0

ah − 1
h

Try to find both an algebraic reason and a pictorial one.

5. Sketch the function f (x) = e−x2
. Where have you seen this before, and what uses does this

function have?
11In the US, mortgage companies typically quote an interest rate which they use to compound monthly. For example,

if the quoted rate is 7%, then the effective annual (simple) interest rate is
(

1 + 0.07
12

)12
− 1 = 7.229%. By law, this higher

effective APR must be quoted somewhere, though it is unlikely to be as prominently posted. . .
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