Math 8: Homework Questions 2

Submit questions 2, 3(a), 4, 5(a, c)

1. If a line passes through points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ show that it has equation

$$
y=y_{0}+\frac{y_{1}-y_{0}}{x_{1}-x_{0}}\left(x-x_{0}\right)
$$

2. Find the equations of all quadratic polynomial functions which pass through the points $(1,3)$ and $(2,4)$.
3. For the following quadratic functions, complete the square and use your answer to graph the function.
(a) $f(x)=x^{2}-6 x+5$
(b) $f(x)=-x^{2}+x+1$
(c) $f(x)=-3 x^{2}+8 x+5$

For part (a), also find two intervals ($-\infty, k]$ and $[k, \infty$) (same k !) on which f is invertible. For each interval, compute the inverse function f^{-1}.
4. Consider the frisbee/tree problem in the notes. If you throw the ball in such a way that the initial vertical speed of the ball is twice its horizontal speed, find how fast you have to throw the ball in order to hit the frisbee.
(Hint: If $y(x)$ is the trajectory, you need $y^{\prime}(0)=2$: why?)
5. Factorize the following polynomials and thereby find their (real) roots. Explain your steps carefully.
(a) $f(x)=x^{3}+2 x^{2}-3 x$
(b) $f(x)=x^{4}-13 x^{2}+36$
(c) $f(x)=x^{3}-7 x-6$
(d) $f(x)=x^{6}-2 x^{5}-x^{4}-4 x^{3}-4 x^{2}-4 x-6$
6. Let $f(x)=a x^{3}+b x^{2}+c x+d$ is a cubic polynomial. 'Complete the cube' by finding a linear substitution $x-k$ such that

$$
f(x)=a(x-k)^{3}+p(x-k)+q
$$

has no $(x-k)^{2}$ term (i.e. find k, p, q which satisfy the above).
7. Let $A=\left(a, a^{2}\right), B=\left(b, b^{2}\right)$ be any point on the graph of the function $f(x)=x^{2}$.
(a) Find the equation $y=m x+c$ for the line joining A, B and verify that the segment $\overline{A B}$ lies above the graph of the parabola (i.e. $f(x)=x^{2}$ is convex).
(b) By appealing to the idea of completing the square, explain without calculation why every quadratic polynomial is either concave up or concave down.

