Math 8: Homework Questions 3

Submit questions 1(b), 2, 3, 4(a), 5, \& 6 on Canvas by Thursday $21^{\text {st }}$ April

1. Use Newton-Raphson iteration to find a root of the given function to 4 dp . (Use a calculator, but explain what you are doing!)
(a) $f(x)=x^{3}-4$
(b) $f(x)=2 x^{3}+x-1$
2. Use the Newton-Raphson method to find a rational number approximation to $\sqrt[3]{2}$ in lowest terms $\frac{p}{q}$ where $10<q<100$.
3. Suppose you perform the Newton-Raphson iteration for the function $f(x)=x^{2}-2$ starting with some positive $x_{0}>0$.
(a) If $x_{n}>0$, show that $x_{n+1}-\sqrt{2}=\frac{1}{2 x_{n}}\left(x_{n}-\sqrt{2}\right)^{2}$.
(b) Explain why $\left|x_{n}-\sqrt{2}\right|<\frac{1}{2^{n}}\left|x_{0}-\sqrt{2}\right|$. Hence conclude that the sequence of iterates (x_{n}) converges to $\sqrt{2}$.
4. Let $f(x)=x^{3}-5 x$.
(a) What happens if you apply Newton-Raphson iteration to this function with initial condition $x_{0}=1$? Draw a picture to illustrate.
(b) Investigate what happens for other values of x_{0}. Can you make any conjectures? Is is possible for x_{0} to be positive and yet for $x_{n} \rightarrow-\sqrt{5}$? Can you make any sense of what happens if $1<x_{0}<\sqrt{\frac{5}{3}}$?
5. Ten children had their heights (in inches) measured at their first and second birthdays. The data was as follows.

$$
\begin{array}{l|llllllllll}
1^{\text {st }} \text { birthday } & 28 & 28 & 29 & 29 & 29 & 30 & 30 & 32 & 32 & 33 \\
\hline 2^{\text {nd }} \text { birthday } & 30 & 32 & 31 & 34 & 35 & 33 & 36 & 37 & 35 & 37
\end{array}
$$

Given this data, use a regression model to predict the 2-year height of a child who measures 32 inches at age 1. What is the coefficient of determination and what does it say about your confidence in your prediction?
(You can-and should!-do this by hand. The averages are integers, so everything is easy...)
6. (a) Let a, b be given. Find the value of y which minimizes the sum of squares

$$
(y-a)^{2}+(y-b)^{2}
$$

(b) For the data set $\{(t, y)\}=\{(1,3),(2,1),(2,4)\}$, find the least-squares linear model for predicting y given t.
(Hint: think about part (a) if you don't want to compute)

