Math 8: Homework Questions 6

Submit answers to questions $1,2,3,5 \& 7$ on Canvas by Thursday $26^{\text {th }}$ May

1. Find the focus and directrix of the following parabolas and sketch them.
(a) $y=4 x^{2}-24 x+38$
(b) $y=-2 x^{2}-12 x$
(c) $x+y^{2}=1$
2. For each of the following, complete the square to find the foci and sketch the curve.
(a) $x^{2}+4 y^{2}-2 x+16 y=17$
(b) $2 x^{2}-3 y^{2}+8 x-18 y=5$
3. The equation $x y=1$ is a hyperbola. By making the substitution $x=\frac{1}{\sqrt{2}}(u-v), y=\frac{1}{\sqrt{2}}(u+v)$ show that this is indeed the case. Find the foci and directrices of this hyperbola. (This change of co-ordinates amounts to rotating the plane by 45°)
4. Suppose ℓ is a line parallel to the semi-major axis of an ellipse. If ℓ intersects the ellipse at two points, prove that the distance from each intersection to the nearest focus is the same.
5. Recall that a hyperbola is defined as the set of points P such that the difference of the distances

$$
|F P|-|G P|= \pm 2 a, \quad a<\frac{1}{2}|F G|
$$

from two fixed points (the foci) is constant. Derive the canonical form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. In these co-ordinates, what are the equations of the directrices?
6. Suppose F is a point not on a line d. If $0<e<1$, use algebra to verify that the set of points P satisfying

$$
|F P|=e|P d|
$$

really does describe half an ellipse.
7. Let p be a constant and consider the intersection of the cone $z^{2}=x^{2}+y^{2}$ with the plane $z=$ $p y+1$. Describe how the type of conic obtained relates to the value p.

