MATH 13 HOMEWORK 4

 DUE: Wednesday, May 2

 DUE: Wednesday, May 2}

READING ASSIGNMENT: Read Sections 4.1,4.2, 4.3, 4.4 of the course notes.
PROBLEMS FROM COURSE NOTES: Do problems 4.1.1, 4.1.2, 4.1.5, 4.1.6, 4.2.2, 4.2.5, 4.3.1, 4.3.5, 4.4.1, 4.4.3, 4.4.6, 4.4.9

ADDITIONAL PROBLEMS ON PROOFS BY MINIMUM COUNTER EXAMPLES:
Problem 1. Read the following wikipedia page on the proof of the unique prime factorization theorem we stated as a fact in class (this is typically known as the Fundamental Theorem of Arithmetic):
https://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic
Problem 2. The goal of this exercise is to prove Theorem 3.13 in the notes. Let a, b, c be integers and $d=\operatorname{gcd}(a, b)$.
(a) Recall we have shown in class that the equation $a x+b y=d$ has integer solutions (using the Euclidean algorithm). Use this fact to show that $a x+b y=c$ has integer solutions iff $d \mid c$.
(b) Show that $\left(x_{0}, y_{0}\right)$ is a solution to $a x+b y=0$ iff $\left(x_{0}, y_{0}\right)$ is a solution to $\frac{a}{d} x+\frac{b}{d} y=0$.
(c) Show that if $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ are solutions to $a x+b y=c$, then $\left(x_{0}-x_{1}, y_{0}-y_{1}\right)$ is a solution to $a x+b y=0$.
(d) Use (b) to show that all integer solutions to $a x+b y=0$ have the form:

$$
x=\frac{b}{d} t \quad y=-\frac{a}{d} t \quad \text { where } t \in \mathbb{Z}
$$

Hint: First show for any $t \in \mathbb{Z},\left(\frac{b}{d} t,-\frac{a}{d} t\right)$ is an integer solution to $a x+b y=0$. Then show any integer solution to $a x+b y=0$ has the form $\left(\frac{b}{d} t,-\frac{a}{d} t\right)$ for some $t \in \mathbb{Z}$.
(e) Now assume $d \mid c$. Use parts (c), (d) to show that if $\left(x_{0}, y_{0}\right)$ is a solution to $a x+b y=c$ (this exists by part (a)), then all integer solutions to $a x+b y=c$ have the form

$$
x=x_{0}+\frac{b}{d} t \quad y=y_{0}-\frac{a}{d} t \quad \text { where } t \in \mathbb{Z} .
$$

