MATH 13 HOMEWORK 1 ANSWER KEY

Problem 2.1.10:

(a) Contrapositive: "If someone was playing pool, then Colin was late". This is a true statement (as it is logically equivalent to the original statement).
(b) Converse: "If no-one was playing pool, then Colin was early". We do not know if this is a true statement (generally, knowing the truth of the original statement does not tell us anything about the truth/falsity of the converse).
(c) For (i): if we know "someone was playing pool" is TRUE, then we know Colin was late (because the contrapositive in (a) is true). For (ii): if we know "Colin was late" is TRUE, we cannot conclude anything else

Problem 2.2.7(a):
(\Rightarrow) : Assume $5 x+3$ is even. We show $7 x-2$ is odd.
Note that since 3 is odd and $5 x+3$ is even, $5 x$ must be odd. Hence x must be odd (Why? If x was even, say $x=2 k$ for some k, then $5 x=2(5 k)$ is even. Contradiction.). Let l be such that $x=2 l+1$. Then $7 x-2=7(2 l+1)-2=2(7 l+2)+1$ is clearly odd.
(\Leftarrow) : Now assume $7 x-2$ is odd. We show $5 x+3$ is even.
We have that $7 x$ must be odd and hence x is odd (by a similar argument as above). Let $x=2 l+1$ for some l. Then $5 x+3=5(2 l+1)+3=2(5 l+4)$ is even.

Problem 3:

The original statement can be written as " $x \geq 10 \wedge y \geq 10$ ". Now use DeMorgan's law to negate this statement, we get the negation is: " $x<10 \vee y<10$ ". Translate this back to English: " x is less than 10 or y is less than 10 ".
Problem 4b: Suppose n is not divisible by 3 . There are two cases:
Case 1: $n=3 k+1$ for some integer k. Then $n^{2}-1=(3 k+1)^{2}-1=9 k^{2}+6 k+1-1=$ $9 k^{2}+6 k=3\left(3 k^{2}+2 k\right)$ is clearly divisible by 3 .

Case 2: $n=3 k+2$ for some integer k. Then $n^{2}-1=(3 k+2)^{2}-1=9 k^{2}+6 k+4-1=$ $9 k^{2}+6 k+3=3\left(3 k^{2}+2 k+1\right)$ again is divisible by 3 .
Problem 6: We simply examine the truth table of $(P \wedge Q) \Rightarrow(P \vee Q)$. You can write out the full truth table for this; it is basically the same as what I'm doing here.

Observe that if P is T then $P \vee Q$ is T. Hence $(P \wedge Q) \Rightarrow(P \vee Q)$ is T (regardless of the truth value of Q).

If P is F , then $P \wedge Q$ is F, hence $(P \wedge Q) \Rightarrow(P \vee Q)$ is T (regardless of the truth value of $Q)$. Hence $(P \wedge Q) \Rightarrow(P \vee Q)$ is T in all cases. Therefore, it is a tautology.

