MATH 150 HOMEWORK 5 Due: Nov 22, 2017

IMPORTANT INSTRUCTION: It is crucial that you clearly explain how you arrive at your conclusions.

1. (5pts) Let \mathcal{L} be a first order language language, Σ be a set of \mathcal{L} -sentences, and σ, τ be \mathcal{L} -sentences. Prove or disprove the following statements. Recall the \vDash symbol used below is "logical implication" as defined in lectures.

- (a) (1pt) If $\Delta \subseteq \Sigma$ and $\Delta \vDash \sigma$ then $\Sigma \vDash \sigma$.
- (b) (2pts) $\Sigma \cup \{\tau\} \vDash \sigma$ if and only if $\Sigma \vDash \tau \to \sigma$.
- (c) (2pts) Σ is satisfiable if and only if there is an \mathcal{L} -sentence ρ such that $\Sigma \nvDash \rho$.

2. (5 pts) Let $\mathcal{L} = \{P, Q\}$ be a first order language with P a 2-ary relation symbol and Q a 1-ary relation symbol. Show the following.

- (a) (1pt) $\forall v_1 \ Qv_1 \vDash \exists v_2 \ Qv_2$.
- (b) (1pt) $\exists x \forall y \ Pxy \vDash \forall y \ \exists x \ Pxy$.
- (c) (2pt) $\forall y \exists x \ Pxy \nvDash \exists x \ \forall y \ Pxy$.
- (d) (1pt) $\emptyset \vDash \exists x(Qx \to \forall x Qx).$

3. (5pt) Let $\mathcal{L} = \{\dot{+}, \dot{\times}, \dot{<}, \dot{0}, \dot{1}\}$ be the language of ordered rings introduced in class. Let $\mathfrak{M} = (\mathbb{R}; +, \times, <, 0, 1)$ be the \mathcal{L} -structure, where \mathbb{R} is the set of real numbers, $+ = \dot{+}^{\mathfrak{M}}$ is the usual addition on real numbers, $\times = \dot{\times}^{\mathfrak{M}}$ is the usual multiplication on real numbers, $<= \dot{<}^{\mathfrak{M}}$ is the usual "less than" relation on real numbers, $0 = \dot{0}^{\mathfrak{M}}$, and $1 = \dot{1}^{\mathfrak{M}}$.

Express each of the following statements as a formula (or sentence) in \mathcal{L} and check whether \mathfrak{M} satisfies the formula with respect to the evaluation $s: V \to \mathbb{R}$ defined as: $s(x_{2n+1}) = \sqrt{2n}$ for all $n \in \mathbb{N}$.

- (a) (1.5 pt) $\varphi_1 \equiv$ "there is no largest negative number".
- (b) (1.5 pt) $\varphi_2(x_3) \equiv x_3$ is in the interval $[\frac{1}{2}, \frac{2}{3}]^n$.

Define the following sets in \mathfrak{M} .

- (i) (1 pt) The binary relation R consisting of tuples (a, b) such that $a \ge b$ and b is less than -1.
- (ii) (1 pt) The set of squares less than $\frac{1}{2}$.