MATH 150 HOMEWORK 5

Due: Nov 22, 2017

IMPORTANT INSTRUCTION: It is crucial that you clearly explain how you arrive at your conclusions.

1. (5pts) Let \mathcal{L} be a first order language language, Σ be a set of \mathcal{L}-sentences, and σ, τ be \mathcal{L} sentences. Prove or disprove the following statements. Recall the \vDash symbol used below is "logical implication" as defined in lectures.
(a) (1pt) If $\Delta \subseteq \Sigma$ and $\Delta \vDash \sigma$ then $\Sigma \vDash \sigma$.
(b) (2pts) $\Sigma \cup\{\tau\} \vDash \sigma$ if and only if $\Sigma \vDash \tau \rightarrow \sigma$.
(c) $(\mathbf{2 p t s}) \Sigma$ is satisfiable if and only if there is an \mathcal{L}-sentence ρ such that $\Sigma \not \vDash \rho$.
2. (5 pts) Let $\mathcal{L}=\{P, Q\}$ be a first order language with P a 2-ary relation symbol and Q a 1-ary relation symbol. Show the following.
(a) ($\mathbf{1} \mathbf{p t}) \forall v_{1} Q v_{1} \vDash \exists v_{2} Q v_{2}$.
(b) (1pt) $\exists x \forall y$ Pxy $\vDash \forall \exists x P x y$.
(c) (2pt) $\forall y \exists x$ Pxy $\not \models \exists x \forall y$ Pxy.
(d) $(\mathbf{1 p t}) \emptyset \vDash \exists x(Q x \rightarrow \forall x Q x)$.
3. (5pt) Let $\mathcal{L}=\{\dot{+}, \dot{\times}, \dot{<}, \dot{0}, \dot{1}\}$ be the language of ordered rings introduced in class. Let $\mathfrak{M}=$ $(\mathbb{R} ;+, \times,<, 0,1)$ be the \mathcal{L}-structure, where \mathbb{R} is the set of real numbers, $+=\dot{+}^{\mathfrak{M}}$ is the usual addition on real numbers, $x=\dot{x}^{\mathfrak{M}}$ is the usual multiplication on real numbers, $<=\dot{<}^{\mathfrak{M}}$ is the usual "less than" relation on real numbers, $0=\dot{0}^{\mathfrak{M}}$, and $1=\dot{1}^{\mathfrak{M}}$.

Express each of the following statements as a formula (or sentence) in \mathcal{L} and check whether \mathfrak{M} satisfies the formula with respect to the evaluation $s: V \rightarrow \mathbb{R}$ defined as: $s\left(x_{2 n+1}\right)=\sqrt{2 n}$ for all $n \in \mathbb{N}$.
(a) (1.5 pt) $\varphi_{1} \equiv$ "there is no largest negative number".
(b) (1.5 pt) $\varphi_{2}\left(x_{3}\right) \equiv " x_{3}$ is in the interval $\left[\frac{1}{2}, \frac{2}{3}\right)$ ".

Define the following sets in \mathfrak{M}.
(i) ($\mathbf{1} \mathbf{~ p t) ~ T h e ~ b i n a r y ~ r e l a t i o n ~} R$ consisting of tuples (a, b) such that $a \geq b$ and b is less than -1 .
(ii) (1 pt) The set of squares less than $\frac{1}{2}$.

