MATH 150 HOMEWORK 6
 Due: Wednesday Dec 6

IMPORTANT INSTRUCTION: It is crucial that you clearly explain how you arrive at your conclusions.

1. (6pts) Let $\mathcal{L}=\{\dot{E}\}$ be the language of graphs (recall the definition of a graph discussed in class).
(3pts)Express each of the following statements about graphs as a a set (possibly infinite) of sentences in \mathcal{L}. That is, in each of the following cases find a set of \mathcal{L}-sentences Σ such that for every graph G,
G has the named property iff $G \vDash \Sigma$.
(a) ($\mathbf{1 p t)}$ " G contains arbitrarily large finite cliques"
(b) ($\mathbf{1 p t)}$ " G consists of disjoint cycles"
(c) ($\mathbf{1 p t)}$ "Any two nodes in G have the same degree."
(3pts) Prove that there is no set Σ (possibly infinite) of \mathcal{L}-sentences such that for every graph $G=(V, E)$ (so G is an \mathcal{L}-structure), the following holds:

$$
G \vDash \Sigma \text { if and only if } G \text { has finitely many cliques of size } 5
$$

A clique of size n in a graph is a set of n nodes $\left\{x_{1}, \ldots, x_{n}\right\}$ such that for every $i \neq j$, the nodes x_{i} and x_{j} are connected with an edge.
For $k \geq 3$ we define the notion of a cycle of length k as follows. A cycle of length k in a graph is a sequence $\left\{x_{1}, \ldots, x_{k}\right\}$ of length k of nodes in the graph such that x_{i} is connected with x_{i+1} via an edge for every $i<k$ and also x_{k} is connected with x_{1} via an edge. (Draw pictures!) Two cycles in a graph are disjoint iff they do not have any common vertex.
The degree of a vertex x in a graph is the number of vertices connected with x via an edge.
2. (6pts) Let $\mathcal{L}=\{\dot{E}\}$ be the language of equivalence relations.
$(\mathbf{4} \mathbf{p t s})$ Express each of the following statements as a formula/sentence in \mathcal{L}.
(a) ($\mathbf{1 p t)}$ "There are infinitely many equivalence classes of size 2 "
(b) ($\mathbf{1 p t)}$ "There are arbitrarily large finite equivalence classes"
(c) ($\mathbf{1} \mathbf{p} \mathbf{t})$ "All finite equivalence classes are of even size"
(d) ($\mathbf{1 p t)}$ "All equivalence classes are infinite".
(2pts) Prove that there is no set Σ (possibly infinite) of \mathcal{L}-sentences such that for every equivalence relation structure $\mathcal{A}=(A, E)$ the following holds:
$\mathcal{A} \vDash \Sigma$ if and only if \mathcal{A} has finitely many equivalence classes of size 1.
3. (3pts) Let $\mathcal{L}=\{P\}$ be a language with one 2-ary relation symbol P. Let $\mathcal{M}=\left(\mathbb{Z}, P^{\mathcal{M}}\right)$ be an \mathcal{L}-structure. Here \mathbb{Z} is the set of integers and for all $a, b \in \mathbb{Z}$,

$$
(a, b) \in P^{\mathcal{M}} \Leftrightarrow|b-a|=1 .
$$

(Intuitively, $(a, b) \in P^{\mathcal{M}}$ if and only if a and b are adjacent numbers).
Show that there is an elementarily equivalent \mathcal{L}-structure $\mathcal{N}=\left(N, P^{\mathcal{N}}\right)($ i.e. $\mathcal{M} \equiv \mathcal{N})$ that is not connected.

Here being connected means for every two members a, b of N, there is a path between them. A path of length n, from a to b is a sequence $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ such that $a_{0}=a, a_{n}=b$ and $\left(a_{i}, a_{i+1}\right) \in P^{\mathcal{N}}$ for all $i<n$.

Hint: Add constant symbols c, d to the language \mathcal{L}. Write down the sentences which say that c and d are "far apart" (use the intuition of what "far" means in the model \mathcal{M}). Apply compactness theorem to this set of sentences.

