MATH 150 HOMEWORK 6 Due: Wednesday Dec 6

IMPORTANT INSTRUCTION: It is crucial that you clearly explain how you arrive at your conclusions.

1. (6pts) Let $\mathcal{L} = \{\dot{E}\}$ be the language of graphs (recall the definition of a graph discussed in class).

(3pts)Express each of the following statements about graphs as a set (possibly infinite) of sentences in \mathcal{L} . That is, in each of the following cases find a set of \mathcal{L} -sentences Σ such that for every graph G,

G has the named property iff $G \models \Sigma$.

- (a) (1pt) "G contains arbitrarily large finite cliques"
- (b) (**1pt**) "G consists of disjoint cycles"
- (c) (1pt) "Any two nodes in G have the same degree."

(**3pts**) Prove that there is no set Σ (possibly infinite) of \mathcal{L} -sentences such that for every graph G = (V, E) (so G is an \mathcal{L} -structure), the following holds:

 $G \vDash \Sigma$ if and only if G has finitely many cliques of size 5

A clique of size n in a graph is a set of n nodes $\{x_1, \ldots, x_n\}$ such that for every $i \neq j$, the nodes x_i and x_j are connected with an edge.

For $k \ge 3$ we define the notion of a cycle of length k as follows. A cycle of length k in a graph is a sequence $\{x_1, \ldots, x_k\}$ of length k of nodes in the graph such that x_i is connected with x_{i+1} via an edge for every i < k and also x_k is connected with x_1 via an edge. (Draw pictures!)

Two cycles in a graph are disjoint iff they do not have any common vertex.

The degree of a vertex x in a graph is the number of vertices connected with x via an edge.

- 2. (6pts) Let $\mathcal{L} = \{\dot{E}\}$ be the language of equivalence relations. (4pts) Express each of the following statements as a formula/sentence in \mathcal{L} .
- (a) (1pt) "There are infinitely many equivalence classes of size 2"
- (b) (1pt) "There are arbitrarily large finite equivalence classes"
- (c) (1pt) "All finite equivalence classes are of even size"
- (d) (1pt) "All equivalence classes are infinite".

(2pts) Prove that there is no set Σ (possibly infinite) of \mathcal{L} -sentences such that for every equivalence relation structure $\mathcal{A} = (A, E)$ the following holds:

 $\mathcal{A} \models \Sigma$ if and only if \mathcal{A} has finitely many equivalence classes of size 1.

3. (3pts) Let $\mathcal{L} = \{P\}$ be a language with one 2-ary relation symbol P. Let $\mathcal{M} = (\mathbb{Z}, P^{\mathcal{M}})$ be an \mathcal{L} -structure. Here \mathbb{Z} is the set of integers and for all $a, b \in \mathbb{Z}$,

$$(a,b) \in P^{\mathcal{M}} \Leftrightarrow |b-a| = 1.$$

(Intuitively, $(a, b) \in P^{\mathcal{M}}$ if and only if a and b are adjacent numbers).

Show that there is an elementarily equivalent \mathcal{L} -structure $\mathcal{N} = (N, P^{\mathcal{N}})$ (i.e. $\mathcal{M} \equiv \mathcal{N}$) that is not connected.

Here being *connected* means for every two members a, b of N, there is a path between them. A *path* of length n, from a to b is a sequence (a_0, a_1, \ldots, a_n) such that $a_0 = a$, $a_n = b$ and $(a_i, a_{i+1}) \in P^{\mathcal{N}}$ for all i < n.

Hint: Add constant symbols c, d to the language \mathcal{L} . Write down the sentences which say that c and d are "far apart" (use the intuition of what "far" means in the model \mathcal{M}). Apply compactness theorem to this set of sentences.