Math 150 Homework 5 Solutions

The following is written by Alberto Takase 11/22/2017. I am reachable at atakase@uci.edu.

Problem 1

Let \mathscr{L} be a first-order language. Let Σ be a set of \mathscr{L} -sentences. Let σ and τ be \mathscr{L} -sentences. Prove

- (a) If $\Delta \subseteq \Sigma$ and $\Delta \vDash \sigma$, then $\Sigma \vDash \sigma$.
- (b) $\Sigma \cup \{\tau\} \vDash \sigma$ if and only if $\Sigma \vDash \tau \to \sigma$.
- (c) Σ is satisfiable if and only if there exists an \mathscr{L} -sentence ρ such that $\Sigma \nvDash \rho$.

Proof. We say a structure \mathfrak{M} believes a sentence φ if $\mathfrak{M} \vDash \varphi$.

- (a) Assume $\Delta \subseteq \Sigma$ and $\Delta \vDash \sigma$. To prove $\Sigma \vDash \sigma$, let \mathfrak{M} be an arbitrary structure that believes every sentence in Σ . Because $\Delta \subseteq \Sigma$, \mathfrak{M} believes every sentence in Δ . Because $\Delta \vDash \sigma$, \mathfrak{M} believes σ . Therefore $\Sigma \vDash \sigma$.
- (b) (\Rightarrow) Assume $\Sigma \cup \{\tau\} \vDash \sigma$. To prove $\Sigma \vDash \tau \to \sigma$, let \mathfrak{M} be an arbitrary structure that believes every sentence in Σ . Because $\Sigma \cup \{\tau\} \vDash \sigma$ and because \mathfrak{M} either believes τ or $\neg \tau$, \mathfrak{M} believes $\tau \to \sigma$. Therefore $\Sigma \vDash \tau \to \sigma$.
 - (\Leftarrow) Assume $\Sigma \vDash \tau \to \sigma$. To prove $\Sigma \cup \{\tau\} \vDash \sigma$, let \mathfrak{M} be an arbitrary structure that believes every sentence in $\Sigma \cup \{\tau\}$. Because \mathfrak{M} believes every sentence in Σ , \mathfrak{M} believes $\tau \to \sigma$. Because \mathfrak{M} believes τ , \mathfrak{M} believes σ . Therefore $\Sigma \cup \{\tau\} \vDash \sigma$.
- (c) (\Rightarrow) Assume Σ is satisfiable. Therefore there exists a structure \mathfrak{M} such that \mathfrak{M} believes every sentence in Σ . Define $\rho := (\exists x)[x \neq x]$. Observe \mathfrak{M} does not believe ρ . Therefore $\Sigma \nvDash \rho$.
 - (\Leftarrow) Assume there exists an \mathscr{L} -sentence ρ such that $\Sigma \nvDash \rho$. Therefore there exists a structure \mathfrak{M} such that \mathfrak{M} believes every sentence in Σ and \mathfrak{M} does not believe ρ . Therefore Σ is satisfiable.

Problem 2

Let $\mathscr{L} = \{P, Q\}$ be a first-order language with a 2-ary relation symbol P and a 1-ary relation symbol Q. Prove

- (a) $\forall xQx \vDash \exists xQx.$
- (b) $\exists x \forall y P x y \vDash \forall y \exists x P x y$.
- (c) $\forall y \exists x P x y \nvDash \exists x \forall y P x y$.
- (d) $\varnothing \vDash \exists x(Qx \to \forall yQy).$

Proof. We say a structure \mathfrak{M} believes a sentence φ if $\mathfrak{M} \vDash \varphi$.

- (a) Let \mathfrak{M} be a structure that believes $\forall xQx$. Fix m in the domain of \mathfrak{M} . Therefore \mathfrak{M} believes $Qx[x \mapsto m]$. Therefore \mathfrak{M} believes $\exists xQx$. Therefore $\forall xQx \models \exists xQx$.
- (b) Let \mathfrak{M} be a structure that believes $\exists x \forall y Pxy$. Fix *m* in the domain of \mathfrak{M} such that \mathfrak{M} believes $\forall y Pxy[x \mapsto m]$. Therefore \mathfrak{M} believes $\forall y \exists x Pxy$. Therefore $\exists x \forall y Pxy \models \forall y \exists x Pxy$.
- (c) Let $\mathfrak{M} = (M, P^{\mathfrak{M}}, Q^{\mathfrak{M}})$ be the structure defined by

$$M = \{x : x \text{ is a human}\}$$
$$P^{\mathfrak{M}} = \{(x, y) : x \text{ is the biological parent of } y\}$$
$$Q^{\mathfrak{M}} = \emptyset.$$

Therefore \mathfrak{M} believes $\forall y \exists x P x y$ and \mathfrak{M} does not believe $\exists x \forall y P x y$. Therefore $\forall y \exists x P x y \nvDash \exists x \forall y P x y$.

(d) Let \mathfrak{M} be a structure that believes every sentence in \varnothing . We write $\varphi \equiv \psi$ instead of $\varphi \models \exists \psi$.

$$\exists x (Qx \to \forall y Qy) \equiv \exists x (\neg Qx \lor \forall y Qy)$$
$$\equiv \exists x \neg Qx \lor \forall y Qy$$
$$\equiv \neg \forall x Qx \lor \forall y Qy$$
$$\equiv \top$$

 $\therefore \mathfrak{M}$ believes $\exists x(Qx \to \forall yQy)$. Therefore $\varnothing \vDash \exists x(Qx \to \forall yQy)$.

Problem 3

Let $\mathscr{L} = \{\dot{+}, \dot{\times}, \dot{<}, \dot{0}, \dot{1}\}$ be the first-order language of ordered rings. Let $\mathfrak{M} = (\mathbb{R}, +, \times, <, 0, 1)$ be the standard \mathscr{L} -structure. Translate the following statements in \mathscr{L} , and check whether \mathfrak{M} satisfies the formula with respect to the variable assignment $s: V \to \mathbb{R}: x_{2n+1} \mapsto \sqrt{2n}$:

- (a) "there is no largest negative number."
- (b) " x_3 is in the interval $\left[\frac{1}{2}, \frac{2}{3}\right]$."

Define the following sets in \mathfrak{M} :

- (i) $\{(a, b) : a \ge b \text{ and } b < -1\}.$
- (ii) $\left\{x : x \text{ is a square and } x < \frac{1}{2}\right\}$.

Solution.

- (a) $\varphi \coloneqq (\forall x)[x < 0 \to (\exists y)[y < 0 \land x < y]]$ and $\mathfrak{M} \models \varphi$.
- (b) $\varphi := (\exists x_1)(\exists x_2)[2x_1 = 1 \land 3x_2 = 2 \land (x_1 = x_3 \lor x_1 < x_3) \land x_3 < x_2]$ and 2 := 1 + 1 and 3 := 1 + 1 + 1 and $\mathfrak{M} \nvDash \varphi(x_3)[s]$.
- (i) $\{(a,b) : a \ge b \text{ and } b < -1\} = \{(a,b) : \mathfrak{M} \vDash (b = a \lor b < a) \land b + 1 < 0\}.$
- (ii) $\left\{x : x \text{ is a square and } x < \frac{1}{2}\right\} = \left\{x : \mathfrak{M} \vDash (\exists y)[x = y \cdot y] \land (1+1)x < 1\right\}.$