Math 150 Homework 5 Solutions

The following is written by Alberto Takase 11/22/2017. I am reachable at atakase@uci.edu.

Problem 1

Let \mathscr{L} be a first-order language. Let Σ be a set of \mathscr{L}-sentences. Let σ and τ be \mathscr{L}-sentences. Prove
(a) If $\Delta \subseteq \Sigma$ and $\Delta \vDash \sigma$, then $\Sigma \vDash \sigma$.
(b) $\Sigma \cup\{\tau\} \vDash \sigma$ if and only if $\Sigma \vDash \tau \rightarrow \sigma$.
(c) Σ is satisfiable if and only if there exists an \mathscr{L}-sentence ρ such that $\Sigma \not \models \rho$.

Proof. We say a structure \mathfrak{M} believes a sentence φ if $\mathfrak{M} \vDash \varphi$.
(a) Assume $\Delta \subseteq \Sigma$ and $\Delta \vDash \sigma$. To prove $\Sigma \vDash \sigma$, let \mathfrak{M} be an arbitrary structure that believes every sentence in Σ. Because $\Delta \subseteq \Sigma, \mathfrak{M}$ believes every sentence in Δ. Because $\Delta \vDash \sigma, \mathfrak{M}$ believes σ. Therefore $\Sigma \vDash \sigma$.
(b) (\Rightarrow) Assume $\Sigma \cup\{\tau\} \vDash \sigma$. To prove $\Sigma \vDash \tau \rightarrow \sigma$, let \mathfrak{M} be an arbitrary structure that believes every sentence in Σ. Because $\Sigma \cup\{\tau\} \vDash \sigma$ and because \mathfrak{M} either believes τ or $\neg \tau, \mathfrak{M}$ believes $\tau \rightarrow \sigma$. Therefore $\Sigma \vDash \tau \rightarrow \sigma$.
(\Leftarrow) Assume $\Sigma \vDash \tau \rightarrow \sigma$. To prove $\Sigma \cup\{\tau\} \vDash \sigma$, let \mathfrak{M} be an arbitrary structure that believes every sentence in $\Sigma \cup\{\tau\}$. Because \mathfrak{M} believes every sentence in Σ, \mathfrak{M} believes $\tau \rightarrow \sigma$. Because \mathfrak{M} believes τ, \mathfrak{M} believes σ. Therefore $\Sigma \cup\{\tau\} \vDash \sigma$.
(c) (\Rightarrow) Assume Σ is satisfiable. Therefore there exists a structure \mathfrak{M} such that \mathfrak{M} believes every sentence in Σ. Define $\rho:=(\exists x)[x \neq x]$. Observe \mathfrak{M} does not believe ρ. Therefore $\Sigma \not \vDash \rho$.
(\Leftarrow) Assume there exists an \mathscr{L}-sentence ρ such that $\Sigma \not \models \rho$. Therefore there exists a structure \mathfrak{M} such that \mathfrak{M} believes every sentence in Σ and \mathfrak{M} does not believe ρ. Therefore Σ is satisfiable.

Problem 2

Let $\mathscr{L}=\{P, Q\}$ be a first-order language with a 2 -ary relation symbol P and a 1 -ary relation symbol Q. Prove
(a) $\forall x Q x \vDash \exists x Q x$.
(b) $\exists x \forall y P x y \vDash \forall y \exists x P x y$.
(c) $\forall y \exists x P x y \not \models \exists x \forall y P x y$.
(d) $\varnothing \vDash \exists x(Q x \rightarrow \forall y Q y)$.

Proof. We say a structure \mathfrak{M} believes a sentence φ if $\mathfrak{M} \vDash \varphi$.
(a) Let \mathfrak{M} be a structure that believes $\forall x Q x$. Fix m in the domain of \mathfrak{M}. Therefore \mathfrak{M} believes $Q x[x \mapsto m]$. Therefore \mathfrak{M} believes $\exists x Q x$. Therefore $\forall x Q x \vDash \exists x Q x$.
(b) Let \mathfrak{M} be a structure that believes $\exists x \forall y P x y$. Fix m in the domain of \mathfrak{M} such that \mathfrak{M} believes $\forall y P x y[x \mapsto m]$. Therefore \mathfrak{M} believes $\forall y \exists x P x y$. Therefore $\exists x \forall y P x y \vDash \forall y \exists x P x y$.
(c) Let $\mathfrak{M}=\left(M, P^{\mathfrak{M}}, Q^{\mathfrak{M}}\right)$ be the structure defined by

$$
\begin{aligned}
M & =\{x: x \text { is a human }\} \\
P^{\mathfrak{M}} & =\{(x, y): x \text { is the biological parent of } y\} \\
Q^{\mathfrak{M}} & =\varnothing
\end{aligned}
$$

Therefore \mathfrak{M} believes $\forall y \exists x P x y$ and \mathfrak{M} does not believe $\exists x \forall y P x y$. Therefore $\forall y \exists x P x y \not \models$ $\exists x \forall y P x y$.
(d) Let \mathfrak{M} be a structure that believes every sentence in \varnothing. We write $\varphi \equiv \psi$ instead of $\varphi \vDash \neq \psi$.

$$
\begin{aligned}
\exists x(Q x \rightarrow \forall y Q y) & \equiv \exists x(\neg Q x \vee \forall y Q y) \\
& \equiv \exists x \neg Q x \vee \forall y Q y \\
& \equiv \neg \forall x Q x \vee \forall y Q y \\
& \equiv \top
\end{aligned}
$$

$\therefore \mathfrak{M}$ believes $\exists x(Q x \rightarrow \forall y Q y)$. Therefore $\varnothing \vDash \exists x(Q x \rightarrow \forall y Q y)$.

Problem 3

Let $\mathscr{L}=\{\dot{+}, \dot{\times}, \dot{<}, \dot{0}, \dot{1}\}$ be the first-order language of ordered rings. Let $\mathfrak{M}=(\mathbb{R},+, \times,<, 0,1)$ be the standard \mathscr{L}-structure. Translate the following statements in \mathscr{L}, and check whether \mathfrak{M} satisfies the formula with respect to the variable assignment $s: V \rightarrow \mathbb{R}: x_{2 n+1} \mapsto \sqrt{2 n}$:
(a) "there is no largest negative number."
(b) " x_{3} is in the interval $\left[\frac{1}{2}, \frac{2}{3}\right)$."

Define the following sets in \mathfrak{M} :
(i) $\{(a, b): a \geq b$ and $b<-1\}$.
(ii) $\left\{x: x\right.$ is a square and $\left.x<\frac{1}{2}\right\}$.

Solution.

(a) $\varphi:=(\forall x)[x<0 \rightarrow(\exists y)[y<0 \wedge x<y]]$ and $\mathfrak{M} \vDash \varphi$.
(b) $\varphi:=\left(\exists x_{1}\right)\left(\exists x_{2}\right)\left[2 x_{1}=1 \wedge 3 x_{2}=2 \wedge\left(x_{1}=x_{3} \vee x_{1}<x_{3}\right) \wedge x_{3}<x_{2}\right]$ and $2:=1+1$ and $3:=1+1+1$ and $\mathfrak{M} \not \models \varphi\left(x_{3}\right)[s]$.
(i) $\{(a, b): a \geq b$ and $b<-1\}=\{(a, b): \mathfrak{M} \vDash(b=a \vee b<a) \wedge b+1<0\}$.
(ii) $\left\{x: x\right.$ is a square and $\left.x<\frac{1}{2}\right\}=\{x: \mathfrak{M} \vDash(\exists y)[x=y \cdot y] \wedge(1+1) x<1\}$.

