AD^+, Derived Models, and Σ_1-Reflection

John Steel, Nam Trang

Let AD^+ be the theory $AD + DC_{\omega} + \text{"Every set of reals is } \infty\text{-Borel"} + \text{"Ordinal Determinacy"}$. For any $\Gamma \subseteq P(\mathbb{R})$, let $M_\Gamma = \cup \{ m \mid m \text{ is transitive and } \exists E, F \subseteq \mathbb{R} \times \mathbb{R} \ (E, F \in \Gamma \text{ and } (\mathbb{R}/E, F) \cong (m, \in)) \}$. We’ll prove the following theorems:

Theorem 1. (Woodin) Assume $ZF + AD + V = L(P(\mathbb{R}))$. Then the following are equivalent:

1. AD^+
2. Letting $S = \{ B \subseteq \mathbb{R} \mid B \text{ is Suslin co-Suslin} \}$, $M_S \prec \Sigma_1 V$.

Let us call the statement in (2) above “Σ_1-reflection” to Suslin co-Suslin.

Theorem 2. (Woodin) Assume $ZF + AD^+ + V = L(P(\mathbb{R}))$, then

1. Σ_2^1 has the scale property.
2. $M_{\Delta^2_1} \prec \Sigma_1 V$.

Proof. The theorem follows immediately from Theorem 1 and lemma 7.2 in [?], whose proof is essentially due to Woodin.

In the course of proving Theorem ??, we shall prove part of the determinacy-to-large-cardinals direction of the Derived Model Theorem. Let λ be a limit of Woodin cardinals, and G be V-generic over $Col(\omega, < \lambda)$. We set

$$R^*_G = \cup_{\alpha < \lambda} V[G|\alpha],$$

$$\text{Hom}^*_G = \{ p[T] \cap R^*_G \mid \exists \alpha < \lambda (T \in V[G|\alpha], V[G|\alpha] \models T \text{ is } \lambda\text{-absolutely complemented}) \},$$

$$\mathcal{A}_G = \{ A \subseteq R^*_G \mid A \in V(R^*_G) \text{ and } L(A, R^*_G) \models AD^+ \}, \text{where } V(R^*_G) = \text{HOD}^{V[G]}_{\text{VU}R^*_G \cup \{ R^*_G \}}.$$

Theorem 3. (Woodin) Assume $ZF + AD^+ + V = L(P(\mathbb{R}))$. Suppose also that if AD_R holds, then Θ is singular. Then there is a set X in some generic extension of V such that setting $M = L[X]$, then

1. for some λ, $M \models ZFC + \lambda$ is a limit of Woodins;
2. for some M-generic G over $Col(\omega, < \lambda)$:

 - $V = L(A_G, R^*_G)$, and
• $\text{Hom}_G^* = \{ B \subseteq \mathbb{R}_G^* \mid B \text{ is Suslin co-Suslin in } V \}$.

Remark 4.

- The model $L(\mathcal{A}_G, \mathbb{R}_G^*)$ as in 2 of the previous theorem is called the “new” derived model to distinguish it from the “old” derived model which is $L(\text{Hom}_G^*, \mathbb{R}_G^*)$.

- [?] shows that if $V \models AD^+ + \text{"there is a largest Suslin cardinal"}$, then we have the same conclusions as those of Theorem ?? . What we handle here is the case that $AD_{\mathbb{R}}^+ \text{"\(\Theta\) is singular" holds in } V$.

- Characterization of derived models is one of the main themes in this paper. We want to answer the question: Is every model of AD^+ a derived model? Theorem ? and the previous remark answer this question positively for the “no largest Suslin cardinal + \(\Theta\) singular” and the “largest Suslin cardinal” cases. Woodin has shown that if $V \models AD_{\mathbb{R}}^+ \text{ + \(\Theta\) is regular, then V is elementarily embeddable into a derived model of HOD}$. A proof of this fact can be found in [?]. It’s not known whether V is actually a derived model in this case.

The proof of Theorem 3 is implicit in that of the direction (1) \Rightarrow (2) of theorem 1. Before giving the proof of theorem 1, we’ll state a couple of corollaries of the above theorems, and a key definition.

Corollary 5. Let $M \models ZFC + \lambda$ is a limit of Woodins, and let D be a derived model of M below λ; then D satisfies: Σ_1-reflection (to Suslin co-Suslin), Σ_2 has the scale property, and every non-empty Σ_1 set $A \subseteq P(\mathbb{R})$ has a Δ_2^1 member.

Proof. Woodin has shown that $D \models AD^+$ (see [?] for a proof). Applying theorems 1 and 2 gives us the conclusions.

Corollary 6. Assume AD^+. Then $\text{Ult}(V, \mu)$ is well-founded where μ is the Martin measure on Turing degrees.

Proof. If not, then by Theorem 1, there is $\alpha, \beta < \Theta$ such that $L_\alpha(\mathcal{P}_\beta(\mathbb{R})) \models \text{"Ult}(V, \mu)$ is ill-founded." Since $DC_{\mathbb{R}}$ holds and there is a surjection from \mathbb{R} onto $L_\alpha(\mathcal{P}_\beta(\mathbb{R}))$, $L_\alpha(\mathcal{P}_\beta(\mathbb{R})) \models DC$ and this is a contradiction.

Definition 7. $(ZF + AD + DC_{\mathbb{R}})$ Suppose X is a set. The **Solovay sequence** defined relative to X is the sequence $\langle \Theta^X_\alpha : \alpha \leq \Upsilon_X \rangle$ where

1. Θ^X_0 is the supremum of the ordinals ξ such that there is a surjection $\phi : \mathbb{R} \rightarrow \xi$ such that ϕ is OD from X.
2. $\Theta^X_\alpha = \sup\{ \Theta^X_\beta \mid \beta < \alpha \}$ if $\alpha > 0$ is limit.
3. If $\Theta^X_\alpha < \Theta$ then $\Theta^X_{\alpha+1}$ is the supremum of the ordinals ξ such that there is a surjection $\phi : \mathbb{R} \rightarrow \xi$ such that ϕ is OD(X, A) where A is a set of reals of Wadge rank Θ^X_α.

Remark 8. Suppose AD^+ holds. Let $\Theta^X_\alpha < \Theta$ be a member of the Solovay sequence and A be a set of reals with Wadge rank Θ^X_α. Let $\kappa = \sup\{ \delta^A_n(\kappa) \mid n < \omega \}$. Clearly $\kappa < \Theta^X_{\alpha+1}$. It’s an AD^+ theorem that any B with Wadge rank Θ^X_α has an ∞-Borel code $C_B \subseteq \kappa$. Let $\xi < \Theta^X_{\alpha+1}$. We can define an OD_X surjection $\pi : P(\mathbb{R}) \rightarrow \xi$ as follows. Given $C \subseteq \kappa$, if C codes a tuple $\langle C_B, x, y \rangle$ where $x, y \in \mathbb{R}$, C_B is an ∞ – Borel code for a set B of Wadge
rank Θ^X_α, and if there is a pre-wellordering of the reals of order type ξ that is $OD_X(B,x)$, then we let $\pi(C) = \pi_B(y)$ where $\pi_B : \mathbb{R} \to \xi$ is the surjection associated with the least such pre-wellordering; otherwise, $\pi(C) = 0$. So in fact, under AD^+, $\Theta^X_{\alpha+1}$ is the supremum of ordinals ξ such that there is an OD_X surjection from $P(\kappa)$ onto ξ.

Remark 9. It’s worth pointing out that the Solovay sequence defined in Definition ?? is “globally defined” i.e. defined in V. On the other hand, one can define the notion of “locally defined” Solovay sequences, i.e. Solovay sequences defined in some $L(A,\mathbb{R})$, for $A \subseteq \mathbb{R}$. If $\Theta_{\alpha+1} < \Theta^{L(A,\mathbb{R})}$ then $\Theta_{\alpha+1}$ is a member of the “locally defined” Solovay sequence in $L(A,\mathbb{R})$. $\Theta_{\alpha+1}$ cannot be a limit of Suslin cardinals in $L(A,\mathbb{R})$ as otherwise, it would have an $OD^V(A)$ uniformization. Thus $\Theta_{\alpha+1} = (\Theta^{L(A,\mathbb{R})}_{\gamma+1})$, for some γ. Another key point is the following. Suppose $A \subseteq \Theta_{\alpha+1}$ is $OD^V(B)$ for some $B \subseteq \mathbb{R}$ such that $w(B) < \Theta_{\alpha+1}$. Let $\mathcal{C} = \langle C_\beta \mid \beta < \Theta_{\alpha+1} \rangle$, where \mathcal{C} is an $OD^V(D)$ sequence such that each C_β is a pre-wellordering of \mathbb{R} of length β, where $w(D) = \Theta_\alpha$. Then $\Theta_{\alpha+1}$ is regular in $L(\mathbb{R})[A,C]$. This is important because it makes the Woodins’ techniques for constructing measures under AD described in [?] relevant. We state here a theorem which will be used heavily.

Theorem 10. (Woodin, see Theorem 5.6 of [?]) Assume $ZF + DC + AD$. Suppose X and Y are sets and let $\Theta_{X,Y} = \sup \{ \alpha \mid \text{there is an } OD_{X,Y} \text{ surjection } \pi : \mathbb{R} \to \alpha \}$.

Then

$$HOD_X \models ZFC + \Theta_{X,Y} \text{ is a Woodin cardinal.}$$

Proof of Theorem 1:

We deal with the easy direction $(2) \Rightarrow (1)$ first. Suppose there is a set of reals in V that has no ω-Borel codes. One can show that A has an ω-Borel code if and only if A has an ω-Borel code which is coded by a set of reals projective in A. So our supposition is Σ^2_2. By (2), there is a Suslin co-Suslin set B that has no ω-Borel codes; but this is absurd since any tree T such that $p[T] = B$ is an ω-Borel code of B.

For Ordinal Determinacy, again suppose there is a set B in V such that Ordinal Determinacy fails for B. The ordinal game associated to B and pre-wellordering \leq of \mathbb{R} has a winning strategy if and only if it has a winning strategy projective in \leq, by the Coding Lemma. So our supposition is Σ^2_1. By (2), there is a Suslin co-Suslin set B such that Ordinal Determinacy fails for B. This contradicts a theorem of Moschovakis and Woodin which states that Ordinal Determinacy holds for any Suslin co-Suslin set.

Finally, to see $DC_{\mathbb{R}}$ holds. Suppose not. Again, by our hypothesis, there is a Suslin co-Suslin relation $E \subseteq \mathbb{R} \times \mathbb{R}$ witnessing the failure of $DC_{\mathbb{R}}$. However, we can uniformize E using the scale associated with a tree T such that $p[T] = E$. This gives us an infinite E-chain, which is a contradiction. This completes the proof of $(2) \Rightarrow (1)$.

Remark 11. Our proof used that Σ^2_1 reflects to Suslin co-Suslin, rather than the full Σ^1_1-reflection in (2). Derived models satisfy Σ^1_1-reflection, hence they satisfy AD^+; see [?] and [?].
The rest of the paper is dedicated to the proof of (1) \(\Rightarrow \) (2). First, assume there is a largest Suslin cardinal. This is the easier case.

Lemma 12. If \(\Theta \) is regular and \(V = L(P(\mathbb{R})) \models \phi[x] \) where \(x \in \mathbb{R} \) and \(\phi \) is \(\Sigma_1 \), then there is a transitive \(M \) such that \(M \) is a surjective image of \(\mathbb{R} \) and \((M, \in) \models \phi[x] \).

Proof. By relativization, \(L_\alpha(P(\mathbb{R})) \models \phi[x] \) for some ordinal \(\alpha \). We’ll form a Skolem hull \(H \) of \(L_\alpha(P(\mathbb{R})) \). First, fix a surjection \(h : \alpha \times P(\mathbb{R}) \to L_\alpha(P(\mathbb{R})) \). Let \(H_0 = \mathbb{R} \). Suppose we already have \(H_n \) and a surjection \(\pi_n : \mathbb{R} \to H_n \). To build \(H_{n+1} \), for any \(a \in H_n \) and any formula \(\varphi \) such that \(L_\alpha(P(\mathbb{R})) \models \exists y \varphi[y, a] \), pick the least \(\beta \) such that there is an \(A \subseteq \mathbb{R} \) such that \(L_\alpha(P(\mathbb{R})) \models \varphi[h(\beta, A), a] \). Then let \(\gamma \) be the least such that there is an \(A \subseteq \mathbb{R} \) such that \(w(A) = \gamma \) and \(L_\alpha(P(\mathbb{R})) \models \varphi[h(\beta, A), a] \). Denote the \((\beta, \gamma) \) above \((\beta_0, \gamma_0) \). Now, let \(H_{n+1} = H_n \cup \{ h(\beta_0, A) \mid a \in H_n, w(A) = \gamma_0 \} \). By regularity of \(\Theta \) and the fact that \(\pi_n : \mathbb{R} \to H_n \) is surjective, \(\sup \{ \gamma_n \mid a \in H_n \} \in \Theta \). Hence, there is a surjection \(\pi_{n+1} : \mathbb{R} \to H_{n+1} \). Finally, let \(H = \cup_n H_n \). Hence \(H < L_\alpha(P(\mathbb{R})) \) by construction. Since \(\Theta \) is regular, \(\mathbb{R} \subseteq H \), and \(V = L(P(\mathbb{R})) \), it is easy to see that \(H \) collapses to some \(L_\alpha(P_\gamma(\mathbb{R})) \) for some \(\delta, \gamma < \Theta \). Since \(L_\delta(P_\gamma(\mathbb{R})) \models \phi[x] \), \(L_\delta(P_\gamma(\mathbb{R})) \) is the desired \(M \). \(\Box \)

Lemma 13. Suppose there is a largest Suslin cardinal, then \(\Theta \) is regular.

Proof. Let \(\kappa \) be the largest Suslin cardinal and \(T \) be a tree on \(\omega^2 \times \kappa \) such that \(p[T] \) is a universal \(\Gamma \)-set (where \(\Gamma \) is the boldface pointclass of \(\kappa \)-Suslin sets of reals).

For each \(A \subseteq \mathbb{R} \), we have \(L(T, A, \mathbb{R}) \models DC \) because \(\mathbb{V} \models DC_{\mathbb{R}} \). Let \(T_A \) be the image of \(T \) under the Martin measure ultrapower map where the ultrapower is computed with respect to functions in \(L(T, A, \mathbb{R}) \). Because \(L(T, A, \mathbb{R}) \models DC \), \(Ult(L(T, A, \mathbb{R}), \mu_T) \) is wellfounded. By relativizing the proof that \(P(\mathbb{R}) \subseteq L(T^*, \mathbb{R}) \) to the universe \(L(T, A, \mathbb{R}) \) (see [?]), we get that \(A \in L(T_A, \mathbb{R}) \). Notice that \(T_A \) only depends on \(w(A) \) but not \(A \) itself. So we in fact have an enumeration \(\langle T_\alpha \mid \alpha < \Theta \rangle \) where for each \(\alpha < \Theta \), \(T_\alpha = T_A \) for any \(A \) with Wadge rank \(\alpha \). Now let \(\gamma = sup \{ sup T_\alpha \mid \alpha < \Theta \} \) and \(C \subseteq \Theta \times \gamma \) is such that \((\alpha, \beta) \in C \Leftrightarrow \beta < T_\alpha \). Then \(T_A \in L[C] \) for any \(A \subseteq \mathbb{R} \). So \(P(\mathbb{R}) \subseteq L(C, \mathbb{R}) \). So \(V = L(C, \mathbb{R}) \). The following claim supplies an important step toward proving \(\Theta \) is regular.

Claim 14. \(\Theta \) is regular if and only if \(Collection \) holds, where \(Collection \) is the following statement:

\[
(\forall x \in \mathbb{R}) (\exists A \subseteq \mathbb{R}) (x, A) \in U \to (\exists B \subseteq \mathbb{R}) (\forall x \in \mathbb{R}) (\exists y \in \mathbb{R}) (x, B_{x,y}) \in U, \text{ where } B_{x,y} = \{z \mid (x, y, z) \in B\}.
\]

Proof. \((\Leftarrow) \) Suppose \(\Theta \) is singular. Let \(f : \mathbb{R} \to \Theta \) be cofinal. So \((\forall x \in \mathbb{R}) (\exists A \subseteq \mathbb{R}) (A \text{ is a pre-wellordering of } \mathbb{R} \text{ of length } f(x)) \). By \(Collection \), \((\exists B \subseteq \mathbb{R}) (\forall x \in \mathbb{R}) (\exists y \in \mathbb{R}) (B_{x,y} \text{ is a pre-wellordering of } \mathbb{R} \text{ of length } f(x)) \). Define \(g : \mathbb{R} \to \Theta \) as follows: for any \(x \in \mathbb{R} \), if \(x = (x_0, x_1, x_2) \) and \(B_{x_0,x_1} \) is a pre-wellordering of \(\mathbb{R} \) of order type \(f(x_0) \), then let \(g(x) = \text{rank of } x_2 \text{ in the pre-wellordering } B_{x_0,x_1} \); otherwise, let \(g(x) = 0 \). Clearly, \(g \) is onto. This is a contradiction.

\((\Rightarrow) \) Suppose \(\Theta \) is regular. Let \(U \) be as in the hypothesis of \(Collection \). For \(x \in \mathbb{R} \), let \(f(x) \) be the least \(\xi \) such that there is \(A \subseteq \mathbb{R} \) with Wadge rank \(\xi \) and \((x, A) \in U \). Since \(\Theta \) is regular, \(f \) is bounded in \(\Theta \). Fix an \(\alpha < \Theta \) such that \(\alpha \geq sup(rng(f)) \). Let \(B = \{(x, y, B_{x,y}) \mid x, y \in \mathbb{R}, y \text{ Wadge reduces } B_{x,y} \text{ to } A\} \). Clearly, \(B \) satisfies the conclusion of \(Collection \). \(\Box \)
By claim ??, it suffices to prove that $L(C, \mathbb{R}) \models Collection$. So let U be as in the hypothesis of Collection. Let $B = \{(x, y, B_{x,y}) \mid B_{x,y}$ is the least $OD_C(y)$ set such that $(x, B_{x,y}) \in U\}$. This B clearly works because every set of reals in $V = L(C, \mathbb{R})$ is $OD_C(y)$ for some real y.

The proof of Lemma ?? also implies that DC holds, hence the Martin measure ultrapower is well-founded. This fact is used to show that there is an M in a generic extension of V such that V is a derived model of M. See [?] for a proof of this. The conclusion 2 of Theorem ?? then follows from Lemma ?? above and Lemma 7 of [?].

Now, we’re on to the “no largest Suslin cardinal” case. So we have $AD_\mathbb{R}$. First, assume Θ is regular. By Lemma ??, $M_\mathbb{P}(\mathbb{R}) \prec \Sigma_1 V$. Since all sets of reals are Suslin co-Suslin, we’re done.

From now on, we may assume that Θ is singular. We have that every set of reals is Suslin co-Suslin. Our strategy is to Prikry-force a universe M such that V is a derived model of M. This guarantees that Σ_2-reflection holds in V, but with a little more argument, we’ll be able to show Σ_1-reflection holds in V. Most of what we are doing here, then, is proving Theorem ?? in the case $AD_\mathbb{R} + \Theta$ is singular.

Case 1: $\text{cof}(\Theta) = \omega$.

Let $\langle \Theta_\alpha \mid \alpha < \gamma \rangle$ be the Solovay sequence of V. Notice that $\text{cof}(\gamma) = \omega$. Hence, there is a sequence $\langle \alpha_i \mid i < \omega \rangle$ cofinal in γ. We can and do take the sequence $\langle \alpha_i \mid i < \omega \rangle$ to be definable from a set of reals and from no ordinal parameters. The hypothesis implies that every set of reals is Suslin, so given an $\alpha < \gamma$, let κ be the largest Suslin cardinal below $\Theta_{\alpha+1}$. Set $HOD_{P(\kappa)} = \{A \mid \forall C \in TC(A \cup \{A\}) C \text{ is } OD \text{ from some } B \in P(\kappa)\}$, then the following hold:

(1.1) $\Theta_{\alpha+1}$ is the supremum of the ordinals ξ for which there is a surjection $\phi : P(\kappa) \to \xi$ such that ϕ is OD.

(1.2) $\Theta_{\alpha+1} = \Theta^{HOD_{P(\kappa)}}$.

(1.3) $HOD_{P(\kappa)} = HOD_X$, where $X = \{B \subseteq \mathbb{R} \mid w(B) < \Theta_{\alpha+1}\}$.

(1.1) follows from Remark 8. Both (1.2) and (1.3) are immediate consequences of (1.1). By (1.3), every bounded subset of $\Theta_{\alpha+1}$ belongs to $HOD_{P(\kappa)}$. Now, for each $i < \omega$, let κ_i be the largest Suslin cardinal below Θ_{α_i+1} and μ_i be the supercompact (nonprincipal, fine, and normal) measure on $P_{\omega_1}(P(\kappa_i))$. Notice here that by $AD_\mathbb{R}$, Solovay’s super-compactness measure on $P_{\omega_1}(\mathbb{R})$ exists and is unique. Since $P(\kappa_i)$ is the surjective image of \mathbb{R}, μ_i exists and is unique. Because it is unique, μ_i is OD. Also, let X_i be the set of all $\sigma \in P_{\omega_1}(P(\kappa_i))$ such that

(2.1) $HOD_{\sigma \cup \{\sigma\}} \models AD^+$

(2.2) $HOD_{\sigma \cup \{\sigma\}} \not\models AD_\mathbb{R}$

(2.3) the transitive collapse of σ is $P(\kappa_{\sigma}) \cap HOD_{\sigma \cup \{\sigma\}}$ where κ_{σ}^σ is the largest Suslin
Lemma 15. $\mu_i(X_i) = 1$

Proof. Let

$$\prod_{\sigma} HOD_{\sigma \cup \{\sigma\}} / \mu_i = M,$$

where the ultraproduct is formed in the universe $HOD_{P(\kappa_i)}$. The reason we do this is that we do not have DC in V, and thus the ultraproduct formed in V might be illfounded. On the other hand, $HOD_{P(\kappa_i)} \models DC$, so M is well-founded, and we take it to be transitive. Let σ^∞ be the element of M represented by the identity function. By Los, for all formulas ϕ,

$$M \models \phi[\sigma^\infty] \iff \mu_i(\{\sigma \in P_{\omega_1}(P(\kappa_i)) \mid HOD_{\sigma \cup \{\sigma\}} \models \phi[\sigma]\}) = 1.$$

We should remark here that even though we don’t have AC, Los theorem still goes through because of normality (closure under diagonal intersections) of μ_i. The following claim will complete the proof of the lemma.

Claim 16. The following hold:

1. The transitive collapse of σ^∞ is $P(\kappa_i)$.
2. $\mathbb{R} \cap M = \mathbb{R}$.
3. $P(\mathbb{R}) \cap M = \{B \mid w(B) < \Theta_{\alpha_i + 1}\} = P(\mathbb{R}) \cap HOD_{P(\kappa_i)}$.

Proof. (1) and (2) are easy consequences of normality, so we leave them to the reader. To prove (3), suppose first that $w(B) < \Theta_{\alpha_i + 1}$. So $B \in HOD_{P(\kappa_i)}$. Let $f(\sigma) = B \cap \sigma$ for $\sigma \in P_{\omega_1}(P(\kappa_i))$. Then $f \in HOD_{P(\kappa_i)}$ and $[f]_{\mu_i} = B$. On the other hand, $M \subseteq HOD_{P(\kappa_i)}$ as the ultraproduct is formed in $HOD_{P(\kappa_i)}$.

Let

$$T_0 = \{\langle \sigma_0, \ldots, \sigma_n \rangle \mid \sigma_i \in P_{\omega_1}(P(\kappa_i)) \text{ for all } i\}.$$

Let T be the set of all $s = \langle \sigma_0, \ldots, \sigma_n \rangle \in T_0$ such that for all $i \leq n$

1. $P(\mathbb{R})^{HOD(s)} = P(\mathbb{R})^{HOD}$,
2. $\sigma_i \in X_i$,
3. $\sigma_k \subset \sigma_i$ and $\sigma_k \in HOD_{\sigma_{i \cup \{\sigma_i\}}}$ for all $k \leq i$,
4. σ_k is countable in $HOD_{\sigma_{i \cup \{\sigma_i\}}}$ for all $k < i$,
5. θ^{σ_i} is Woodin in $HOD_{\sigma_{i \cup (i+1)}}$ and $P(\theta^{\sigma_i}) \cap HOD_{\sigma_{i \cup (i+1)}} = P(\theta^{\sigma_i}) \cap HOD_{\{s\}}$, where $\theta^{\sigma_i} = \Theta_{HOD_{\sigma_{i \cup \{\sigma_i\}}}}$. Note here that θ^{σ_i} is a successor in the Solovay sequence of $HOD_{\sigma_{i \cup \{\sigma_i\}}}$.
Remark 17. For any \(s = \langle \sigma_0, \ldots, \sigma_n \rangle \in T_0 \), \(\text{HOD}_{\{s\}} = \text{HOD}_s \). From now on, we’ll write \(\text{HOD}_s \) for \(\text{HOD}_{\{s\}} \).

Lemma 18. Let \(t = \langle \sigma_0, \ldots, \sigma_n \rangle \) be such that (3.1)-(3.4) hold. Let \(\sigma = \sigma_n \), and set \(H = \text{HOD}_t \). Then

\[
H = \text{HOD}_H^{\text{HOD}_{\sigma \cup \{\sigma\}}}.
\]

Proof. Here \(\text{HOD}_H \) consists of all sets \(\text{HOD} \) from members of \(H \). Notice here that \(H \subseteq H \cap \text{HOD}_{\sigma \cup \{\sigma\}} \); hence the right hand side of the equation makes sense and \(H \subseteq H \cap \text{HOD}_H^{\text{HOD}_{\sigma \cup \{\sigma\}}} \).

The \(\supseteq \) direction follows from the fact that \(\sigma \) is OD from \(t \).

Lemma 19. Let \(s \in T \) and \(\text{dom}(s) = i \); then \(\forall \mu \sigma \ (s + \langle \sigma \rangle \in T) \).

Proof. Fix \(s \in T \) with \(\text{dom}(s) = i \). It is easy to see that \(\forall \mu \sigma, s + \langle \sigma \rangle \) satisfies (3.1)-(3.4), so we address (3.5). We want to show \(\forall \mu \sigma, H \cap \text{HOD}_{s + \langle \sigma \rangle} \models \theta^\sigma \) is Woodin. Let \(H = H \cap \text{HOD}_{s + \langle \sigma \rangle} \). Let us work now in \(\text{HOD}_{\sigma \cup \{\sigma\}} \), where \(\text{AD}^+ \) holds and \(\text{AD}_\kappa \) fails. This implies that \(\Theta = \Theta_Y \) for some \(Y \). Also, \(\Theta \) is regular and DC holds. We have then from Theorem 5.6 of [?] that

\[
H \models \Theta \text{ is Woodin.}
\]

By the previous theorem, \(H = H \cap \text{HOD}_H \), hence we’re done.

Let \(s = \langle \sigma_0, \ldots, \sigma_{i-1} \rangle \). Without loss of generality, it is enough to see that \((\forall \mu \sigma, \theta \models \text{HOD}_s = \text{HOD}_s + P(\theta^{\sigma-1}) \cap \text{HOD}_s = P(\theta^{\sigma-1}) \cap \text{HOD}_{s + \langle \sigma \rangle}) \). It is clearly enough to show \((\forall \mu \sigma, \theta \models \text{HOD}_s \supseteq P(\theta^{\sigma-1}) \cap \text{HOD}_{s + \langle \sigma \rangle}) \).

Suppose not. We have \((\forall \mu \sigma, (\exists A_\sigma \subseteq \theta^{\sigma-1}) (A_\sigma \in \text{HOD}_{s + \langle \sigma \rangle} \setminus \text{HOD}_s) \).

Here we take \(A_\sigma \) to be the least such set. Since \(\theta^{\sigma-1} \) is a fixed countable ordinal, we have \((\exists A \subseteq \theta^{\sigma-1})(\forall \mu \sigma) (A = A_\sigma) \). But this A is in fact \(\text{HOD}_s \) since the supercompactness measures are OD. Contradiction.

Lemma 20. Let \(s \in T \) with \(\text{dom}(s) = i \). Let \(\sigma = s(\text{dom}(s) - 1) \). Then there is a partial order \(\mathbb{P} \) such that

1. \(\text{HOD}_s \models \mathbb{P} \) is a \(\theta^\sigma \)-c.c. complete boolean algebra of cardinality \(\theta^\sigma \), and

2. for any \(A \subseteq \kappa^\sigma \) such that \(A \in \text{HOD}_{\sigma \cup \{\sigma\}} \), there is a filter \(G_A \) on \(\mathbb{P} \) such that

 \[
 \bullet \ G_A \text{ is } \text{HOD}_s \text{-generic over } \mathbb{P}, \text{ and}
 \]

 \[
 \bullet \ \text{HOD}_{\{s,A\}} = \text{HOD}_s[G_A].
 \]

Proof. Let \(H = \text{HOD}_s \). Working in \(\text{HOD}_{\sigma \cup \{\sigma\}} \), where \(H = H \cap \text{HOD}_H \) by Lemma ??, let \(\mathbb{P} \) be the Vopenka algebra for adding subsets of \(\kappa^\sigma \) to \(\text{HOD}_H \). So \(\mathbb{P} \) is isomorphic to \((O, \subseteq) \), where \(O \) is the collection of all \(\text{OD}_H \) subsets of \(P(\kappa^\sigma) \). Then (1) and (2) are standard properties of the Vopenka algebra, where the filter \(G_A \) in (2) is the filter generated by \(A \).

Now we’re ready to define our Prikry forcing \(\mathbb{P} \). Conditions in \(\mathbb{P} \) are pairs \((s,F) \) such that \(s \in T \) and \(F : T \to V, F(\emptyset) \in \mu_0 \), and for all \(\langle \sigma_0, \ldots, \sigma_n \rangle \in T \), \(F(\langle \sigma_0, \ldots, \sigma_n \rangle) \in \mu_{n+1} \). The ordering is defined by

\[
(s_0, F_0) \preceq (s_1, F_1) \iff s_1 \subseteq s_0, (\forall s \in T)(F_0(t) \subseteq F_1(t)), (\forall i \in \text{dom}(s_0) - \text{dom}(s_1))(s_0(i) \in F_1(s_0[i])).
\]
Lemma 21. Suppose $Z \subset V^\mathbb{P}$ is countable, ϕ is a formula, and $(s_0, F_0) \in \mathbb{P}$. Then there is a condition $(s_0, G) \in \mathbb{P}$ deciding $\phi[\tau]$ for all $\tau \in Z$.

Proof. Since the usual proof requires DC, which we don’t have, we’ll give here a DC-free proof. Fix $\tau \in Z$. We’ll show that there is an (s_0, G) deciding $\phi[\tau]$ such that G is OD from s_0, F, and τ. Let us say that $u \in T$ is positive if and only if $(\exists G) ((u, G) \Vdash \phi[\tau])$, negative if and only if $(\exists G) ((u, G) \Vdash -\phi[\tau])$, and ambiguous if and only if it is neither positive nor negative. Notice that u cannot be both positive and negative.

For notational convenience, for $u \in T$ with $\text{dom}(u) = n + 1$, we write $\forall^*_u P(\sigma)$ to mean $\{\sigma \mid P(\sigma)\} \in \mu_{n+1}$. Now define $G = G_\tau$ by: for $v \in T$, $G(v) = \{\sigma \mid v + \langle \sigma \rangle$ is positive\} $\cap F_0(v)$ if $(\forall^*_u \sigma) (v + \langle \sigma \rangle$ is positive); $G(v) = \{\sigma \mid v + \langle \sigma \rangle$ is negative\} $\cap F_0(v)$ if $(\forall^*_u \sigma) (v + \langle \sigma \rangle$ is negative); $G(v) = \{\sigma \mid v + \langle \sigma \rangle$ is ambiguous\} $\cap F_0(v)$ if $(\forall^*_u \sigma) (v + \langle \sigma \rangle$ is ambiguous). Clearly G is OD from s_0, τ, F_0 and $(s_0, G) \preceq (s_0, F_0)$. If remains to see that (s_0, G) decides $\phi[\tau]$.\hfill\Box

Claim 22. Let $u \in T$ with $\text{dom}(u) = n + 1$. Then

1. u is positive $\Rightarrow \forall^*_u \sigma (u + \langle \sigma \rangle$ is positive);
2. u is negative $\Rightarrow \forall^*_u \sigma (u + \langle \sigma \rangle$ is negative);
3. u is ambiguous $\Rightarrow \forall^*_u \sigma (u + \langle \sigma \rangle$ is ambiguous).

Proof. If u is positive, then there is an H such that $(u, H) \Vdash \phi[\tau]$. But then whenever $\sigma \in H(u)$, $(u + \langle \sigma \rangle, H) \Vdash \phi[\tau]$. Since $H(u) \in \mu_{n+1}$, we’re done. The proof is the same for u being negative.

Suppose u is ambiguous and the conclusion of (3) is false. Without loss of generality, we may assume $\forall^*_u \sigma (u + \langle \sigma \rangle$ is positive). Let $G = G_\tau$ be as above. Then $(u, G) \Vdash \phi[\tau]$ since if $(v, H) \preceq (u, G)$, then v is positive by and easy induction using part (1), and thus $(v, H) \not\preceq -\phi[\tau]$. Hence u is in fact positive. Contradiction.\hfill\Box

Claim 23. No $u \in T$ is ambiguous.

Proof. Suppose u is ambiguous. Let $G = G_\tau$ be as in the previous claim. Let $(v, H) \preceq (u, G)$ and (v, H) decide $\phi[\tau]$. Then v is not ambiguous. On the other hand, by induction using Claim 18 part (3), v is ambiguous. Contradiction.\hfill\Box

By the previous claim, we may assume without loss of generality that s_0 is positive. But then $(s_0, G_\tau) \Vdash \phi[\tau]$, for otherwise, we have $(v, H) \preceq (s_0, G_\tau)$ forcing $-\phi[\tau]$. This implies that v is negative. However, an induction using Claim 18 part (1) shows that v is positive.

Finally, let $H(v) = \cap_{\tau \in Z} G_\tau(v)$. We get that (s_0, H) decides $\phi[\tau]$ for all $\tau \in Z$.\hfill\Box

Let $G \subset \mathbb{P}$ is V-generic and $s_G = \bigcup\{s \mid (s, F) \in G\}$. Now we use Lemma ?? to prove the following:

Lemma 24. For all $i < \omega$, $P(\theta_i) \cap \text{HOD}^V_{s_G[i+1]} = P(\theta_i) \cap \text{HOD}^V_{\{s_G\}}$, where $\theta_i = \Theta^{\text{HOD}^V_{s_G[i]}}$.\hfill\Box
Proof. The \(\subseteq \) direction is evident because we use \(V \) as a predicate in the definition of \(HOD_{\{s_G^i(V,G)\}} \). Suppose the converse direction fails for some \(i \). Then there is a formula \(\varphi(x_0,x_1,x_2) \), an ordinal \(\xi \), an \(n > i \), an \(F \) such that \((s_G|n,F) \in G \), and

\[
(s_G|n,F) \models \{ \beta < \theta_i \mid (V[G],V) \models \varphi[\beta,\xi,s_G]\} \notin HOD_{\{s_G^i(i+1)\}}.
\]

By Lemma ??, given any \((s_G^i,n,F)\) as above, there is \((s_G^i|n,F^*) \subseteq (s_G^i|n,F)\) such that for all \(\beta < \theta_i \), either \((s_G^i|n,F^*) \models (V[G],V) \models \varphi[\beta,\xi,s_G]\) or \((s_G^i|n,F^*) \models (V[G],V) \models -\varphi[\beta,\xi,s_G]\). Hence we can find such a \((s_G^i|n,F^*)\) in \(G \). So \(\{ \beta < \theta_i \mid (s_G^i|n,F^*) \models (V[G],V) \models \varphi[\beta,\xi,s_G]\}\) = \(\{ \beta < \theta_i \mid \exists F^*(s_G^i|n,F^*) \models (V[G],V) \models \varphi[\beta,\xi,s_G]\}\) \(\in HOD_{\{s_G^i|n\}} \). But \(s_G^i|n \in T \) and \(n > i \), so by (3.5) \(\{ \beta < \theta_i \mid (s_G^i|n,F^*) \models (V[G],V) \models \varphi[\beta,\xi,s_G]\}\) \(\in HOD_{\{s_G^i(i+1)\}} \). This is a contradiction.

Fix a \(G \subseteq \mathbb{P} \) such that \(G \) is \(V \)-generic. Let

\[
N = HOD_{\{s_G^i(V,G)\}}.
\]

It’s easy to see that \(\omega^V_1 \) is a limit of Woodin cardinals in \(N \), \(N \models ZFC \). Here is the key lemma.

Lemma 25. \(V \) is a derived model of \(N \).

Proof. To simplify the notation, let \(N_i = HOD_{s_G^i(i+1)} \) and \(\theta_i = \Theta^{HOD_{s_G^i(i+1)}} \) for each \(i < n \). Then \(\theta_i \) is Woodin in \(N_i \) and \(P(\theta_i) \cap N_i = P(\theta_i) \cap N_j = P(\theta_i) \cap N \) for all \(j \geq i \). As mentioned above, \(\omega^V_1 = \sup \{ \theta_i \mid i < \omega \} \).

Now, let \(K \) be a \(Col(\omega,\omega^V_1) \)-generic over \(N \) such that \(\mathbb{R}^K = \mathbb{R}^V \). To see that there is such a \(K \), it suffices to show that any \(x \in \mathbb{R}^V \) is generic over \(N \) for some poset \(\mathbb{P} \in N[sup(\theta_i)] \). Fix such an \(x \) and pick \(i \) such that \(x \in s_G^i(i) \). By Lemma ??, \(x \) is \(\mathbb{P} \)-generic over \(N_i \), where \(\mathbb{P} \) is the Vopenka algebra of \(HOD_{s_G^i(i+1)} \) for adding a subset of \(\kappa_{s_G^i(i)} \) to \(HOD_{s_G^i(i+1)} = N_i \). But \(P(\theta_i)^N = P(\theta_i)^N \), so \(x \) is \(\mathbb{P} \)-generic over \(N \).

To finish the proof, we need to see that \(P(\mathbb{R})^V \subseteq Hom^*_K \). It suffices to show that \(P(\mathbb{R})^V \subseteq Hom^*_K \). Because then if \(P(\mathbb{R})^V \not\subseteq Hom^*_K \), we get a sharp for \(V \) in a generic extension of \(V \). This is impossible.

So let \(B \in P(\mathbb{R})^V \). \(B \) is Suslin co-Suslin. By Martin’s theorem, \(B \) and \(\mathbb{R} \setminus B \) are homogeneousy Suslin as witnessed by homogeneous trees on \(\omega \times \kappa \) for some \(\kappa < \Theta \). So we can find a countable sequence of ordinals \(f \) such that \(\sup(\text{range}(f)) < \Theta \) from which we can define a pair of trees \((T,U) \) over \(V \) such that \(p[T] = B = \mathbb{R} \setminus p[U] \). The sequence \(f \) comes from the measures of the homogeneity systems from which \(T \) and \(U \) are defined. Pick \(k \) large enough so that \(\text{ran}(f) \subseteq s_G^i(k) \). Also \(s_G^i(k) \cap \text{Ord} \in N \). \(s_G(k) \) is made countable in \(N(\mathbb{R}^V) \) and some real coding \(\text{ran}(f) \) is added. Hence, for some \(i < \omega \) and \(g \in V \) generic over \(N_i \) for the collapse of an ordinal \(\theta_i \), we have \(f \in N_i[g] \). So, for any \(j \geq i \), \(N_j[g] \) can decode \(f \) to get the pair \((T,U) \). Moreover, \(p[T]^N_{j[g]} = B \cap \mathbb{R}_{N_j[g]} = \mathbb{R}_{N_j[g]} - p[U]^N_{j[g]} \). Hence, \(B \in Hom^*_K \) as desired.

Now let \(\phi \) be a \(\Sigma_1 \) formula such that \(V \models \phi[\mathbb{R}] \). We want to show that there are \(\alpha, \beta < \Theta \) such that \(L_\alpha(P_{\beta}(\mathbb{R})) \models \phi[\mathbb{R}] \).

9
Lemma 26. There is an $A \in (\text{Hom}_{<\omega_1^Y})^N$ such that $L(A, \mathbb{R}^N) \models \phi[\mathbb{R}^N]$.

Proof. Let γ be the least such that $L_\gamma(P(\mathbb{R})) \models \phi[\mathbb{R}]$ and $\langle \alpha_i \mid i < \omega \rangle$ is definable in $L_\gamma(P(\mathbb{R}))$. Since V is the derived model of N at ω_1^Y, the station of (Q version of) stationary tower forcing gives an elementary embedding $j: N \to (M, E)$ such that

(10.1) $\text{crt}(j) = \omega_1^N$ and $j(\omega_1^N) = \omega_1^V$;

(10.2) $\mathbb{R}^{(M,E)} = \mathbb{R}^V$;

(10.3) $P(\mathbb{R})^V = (\text{Hom}_{<\omega_1^V})^* \subseteq j((\text{Hom}_{<\omega_1^Y})^N)$

(10.4) $j(A) = A^*$ for each $A \in (\text{Hom}_{<\omega_1^Y})^N$, where $A^* = p[T] \cap \mathbb{R}^V$ for T a homogeneous tree in N such that $p[T] \cap \mathbb{R}^N = A$;

(10.5) γ is in the well-founded part of (M,E).

If $(P(\mathbb{R}))^V \neq j((\text{Hom}_{<\omega_1^Y})^N)$, then there is an $A \in j((\text{Hom}_{<\omega_1^Y})^N) \setminus (P(\mathbb{R}))^V$. Since ϕ is Σ_1 and by (10.2), $(M,E) \models L(A, \mathbb{R}^{(M,E)}) \models \phi[\mathbb{R}^{(M,E)}]$. By elementarity, there is an $A \in (\text{Hom}_{<\omega_1^Y})^N$ such that $L(A, \mathbb{R}^N) \models \phi[\mathbb{R}^N]$. Hence, we may assume $(P(\mathbb{R}))^V = j((\text{Hom}_{<\omega_1^Y})^N)$. Since $\langle \alpha_i \mid i < \omega \rangle$ is definable in $L_\gamma(P(\mathbb{R}))$, from some $B \in P(\mathbb{R})^V = (\text{Hom}_{<\omega_1^Y})^*$, let $\beta < \omega_1^V$ such that there is a $D \in N[K][\beta]$ such that $B = D^*$. Replacing N by $N[K][\beta]$ if necessary where K is as in the previous lemma, we can assume $\langle \alpha_i \mid i < \omega \rangle$ is in the range of j, say $j(\langle \alpha_i^* \mid i < \omega \rangle) = \langle \alpha_i \mid i < \omega \rangle$. Since N is a model of choice, we can choose (using $\langle \alpha_i^* \mid i < \omega \rangle$) a sequence $\langle A_i \mid i < \omega \rangle \in N$ cofinal in $(\text{Hom}_{<\omega_1^Y})^N$. Let $A \in (\text{Hom}_{<\omega_1^Y})^N$ code the A_i’s, say $A = \{\langle i, x(0), x(1)\rangle \mid x = \langle x(0), x(1)\rangle \in A_i\}$. Then A is in $\text{Hom}_{<\omega_1^Y}$ but not Wadge reducible to any A_i. Contradiction.

Lemma ?? and the elementarity of the map j defined there finish the proof of the theorem in the case $\text{cof}(\Theta) = \omega$.

Case 2: $\text{cof}(\Theta) > \omega$

By a result of Solovay, DC holds in this case (see [?]). Let μ be a measure on $\{\alpha \mid \text{cof}(\alpha) = \omega\}$ induced by the measure on $\text{cof}(\Theta) < \Theta$ which in turn is induced by the Martin measure on Turing degrees.

For each $\alpha < \Theta$ such that $\text{cof}(\alpha) = \omega$, let $I_{\alpha} = \{A \subset \Theta_{\alpha} \mid \text{sup}(A) < \Theta_{\alpha}\}$. Therefore,

(11.1) $\text{HOD}_{I_{\alpha}} \models AD^+ + AD_{\mathbb{R}}$

(11.2) $\Theta^{\text{HOD}_{I_{\alpha}}} = \Theta_{\alpha}^V$

(11.3) for each $X \in \text{HOD}_{I_{\alpha}}$, $\Theta^{\text{HOD}_{I_{\alpha}}}$ is a limit of Woodin cardinals in $\text{HOD}(X)$.

We’ll use a slightly different Prikry forcing to add an inner model N like before. The only difference in this case is that we want ω_1^V to be a limit of limits of Woodin cardinals in N. 10
For each $\alpha < \Upsilon$ such that $\text{cof}(\alpha) = \omega$, let μ_α be the supercompact measure on $P_{\omega_1}(I_\alpha)$ induced by the Solovay measure on $P_{\omega_1}(\mathbb{R})$.

Lemma 27. For each $\alpha < \Upsilon$ such that $\text{cof}(\alpha) = \omega$, there are μ_α-measure 1 many σ such that

\[
(12.1) \ HOD_{\sigma \cup \{\sigma\}} \models AD_{\mathbb{R}}
\]

\[
(12.2) \ \text{The transitive collapse of } \sigma \text{ is the set } \{A \subset \Theta \mid \sup(A) < \Theta\} \text{ as computed in } HOD_{\sigma \cup \{\sigma\}}.
\]

Proof. Notice that because of DC, the ultraproduct $\prod_\sigma HOD_{\sigma \cup \{\sigma\}}/\mu_\alpha$ is wellfounded. So identifying it with its transitive collapse, we get $I_\alpha \subset \prod_\sigma HOD_{\sigma \cup \{\sigma\}}/\mu_\alpha \subset HOD_{I_\alpha}$. Also $\Theta_\alpha = \Theta^{HOD_{I_\alpha}} = \Theta^{\prod_\sigma HOD_{\sigma \cup \{\sigma\}}/\mu_\alpha}$. This proves the claim. \[\square\]

Now like before, let T_0 be the set of all finite sequences $\langle \sigma_i \mid i \leq n \rangle$ such that for all $i \leq n$, there is an $\alpha < \Upsilon$ such that

\[
(13.1) \ \text{cof}(\alpha) = \omega
\]

\[
(13.2) \ \Theta_\alpha = \sup \{\gamma \mid \gamma \in \sigma_i\}
\]

\[
(13.3) \ \sigma_i \in P_{\omega_1}(I_\alpha)
\]

\[
(13.4) \ HOD_{\sigma_i \cup \{\sigma_i\}} \models AD_{\mathbb{R}}
\]

\[
(13.5) \ \text{The transitive collapse of } \sigma_i \text{ is } \{A \subset \Theta \mid \sup(A) < \Theta\} \text{ as computed in } HOD_{\sigma_i \cup \{\sigma_i\}}
\]

For each $\langle \sigma_i \mid i \leq n \rangle \in T_0$, let $\alpha_{\sigma_i} = \sup \{\gamma \mid \gamma \in \sigma_i\}$. Now let T be the set of all $s = \langle \sigma_i \mid i \leq n \rangle \in T_0$ such that for all $i \leq n$,

\[
(14.1) \ P(\mathbb{R})^{HOD(s)} = P(\mathbb{R})^{HOD}
\]

\[
(14.2) \ \alpha_{\sigma_i} < \alpha_{\sigma_{i+1}}
\]

\[
(14.3) \ \sigma_k \subset \sigma_i, \ \sigma_k \in HOD_{\sigma_i \cup \{\sigma_{i+1}\}} \text{ for all } k \leq i, \text{ and } \sigma_k \text{ is countable in } HOD_{\sigma_i \cup \{\sigma_i\}} \text{ for all } k < i,
\]

\[
(14.4) \ P(\theta^\sigma) \cap HOD_{\{s(i+1)\}} = P(\theta^\sigma) \cap HOD_{\{s_i\}}, \text{ where } \theta^\sigma = \Theta^{HOD_{\sigma_i \cup \{\sigma_i\}}}.
\]

From the definition of T and a similar proof to that of Lemma 27, if $s \in T$ then for μ-almost all $\alpha < \Upsilon$, for μ_α-almost all $\sigma \in P_{\omega_1}(I_\alpha)$, $s + \langle \sigma \rangle \in T$. Now we’re ready to define the Prikry forcing \mathbb{P}. Conditions in \mathbb{P} are pairs (s,F) such that $s \in T$ and $F : T \to V$ such that for all $t \in T$, $t + \langle \sigma \rangle \in T$ for all $\sigma \in F(t)$ and for μ-almost all $\alpha < \Upsilon$, for μ_α-almost all $\sigma \in P_{\omega_1}(I_\alpha)$, $\sigma \in F(t)$. The ordering on \mathbb{P} is defined by:

$(s_1,F_1) \leq (s_0,F_0) \iff s_0 \subset s_1, \forall i \in \text{dom}(s_1) - \text{dom}(s_0), s_1(i) \in F_0(s_1[i]),$ and $F_1 \subset F_0$ pointwise.
Lemma 28. Suppose $Z \subset V^\mathbb{P}$ is countable, ϕ is a formula, and $(s_0, F_0) \in \mathbb{P}$. Then there is a condition $(s_0, F_1) \in \mathbb{P}$ that decides $\phi[\tau]$ for every $\tau \in Z$.

Proof. Same as that of Lemma ??.

Let $G \subset \mathbb{P}$ be V-generic and let $s_G = \{ s \mid \exists F(s, F) \in G \} = \{ \sigma_i \mid i < \omega \}$.

Lemma 29. (a) For all $i < \omega$, $P(\theta^{s_i}) \cap \text{HOD}^V_{s_G(i+1)} = P(\theta^{s_i}) \cap \text{HOD}^{(V[G], V)}_{\{s_G\}}$, where $\theta^{s_i} = \Theta^\text{HOD}_{s_G(i+1)}$.

(b) For all $i < \omega$, for all A bounded subset of θ^{s_i} and $A \in \text{HOD}_{\sigma_i \cup \{s_i\}}$, there is a partial order \mathbb{P} such that $|\mathbb{P}| < \theta^{s_i}$ and \mathbb{P} is θ^{s_i}-c.c. as computed in $\text{HOD}^V_{s_G(i+1)}$, and $\text{HOD}^V_{\{s_G(i+1), A\}} = \text{HOD}^V_{s_G(i+1)+1}[G_A]$ for some $\text{HOD}^V_{s_G(i+1)}$-generic filter $G_A \subset \mathbb{P}$ in V.

(c) θ^{s_i} is a limit of Woodin cardinals in $\text{HOD}^{(V[G], V)}_{\{s_G\}}$.

Proof. (a),(b) have the same proofs as those of Lemma ?? and ??, It remains to prove (c). By (a), it suffices to prove

$$\text{HOD}^V_{s_G(i+1)} \models \theta^{s_i} \text{ is Woodin.}$$

We know $\text{HOD}^V_{\sigma_i \cup \{s_i\}} \models \text{AD}_\mathbb{R}$, and in $\text{HOD}^V_{\sigma_i \cup \{s_i\}}$, $\text{HOD}^V_{s_G(i+1)} = \text{HOD}^V_{\text{HOD}_{s_G(i+1)}}$, so by Theorem 5.6 of [?], θ^{s_i} is a limit of Woodin cardinals in $\text{HOD}^V_{s_G(i+1)}$. Hence we’re done.

Now, fix some $G \subset \mathbb{P}$ such that G is V-generic, and let

$$N = \text{HOD}^{(V[G], V)}_{\{s_G\}}.$$

As before, for any $x \in \mathbb{R}^V$, $N[x] \equiv ZFC$, and V is the derived model of $N[x]$. By part (c) of the previous lemma, ω_1^V is a limit of limits of Woodin cardinals in $N[x]$. Before stating the next lemma, we need the following:

Definition 30. Suppose δ is a limit of Woodin cardinals, then $\text{Hom}_{<\delta}$ is weakly sealed if the following hold.

1. Suppose $\kappa < \delta$ is a Woodin cardinal and $G \subset Q_{<\kappa}$ is V-generic. Let $j : V \to M \subset V[G]$ be the associated generic embedding. Then $j(\text{Hom}_{<\delta}) = (\text{Hom}_{<\delta})^{(V[G], V)}$.

2. Suppose that $G \subset \mathbb{P}$ is V-generic and $\mathbb{P} \in V_\delta$. Then (1) holds in $V[G]$.

Lemma 31. One of the following must hold.

(a) There is an $x \in \mathbb{R}^V$ and $A \in (\text{Hom}_{<\omega_1^V})^{N[x]}$ such that $L(A, \mathbb{R}^{N[x]}) \equiv \phi[\mathbb{R}^{N[x]}]$.

(b) $\text{Hom}^N_{<\omega_1^V}$ is weakly sealed in N.

Proof. Let γ be large enough that $L_\gamma(P(\mathbb{R}^V)) \equiv \phi[\mathbb{R}^V]$. For any $x \in \mathbb{R}^V$, there is a generic elementary embedding $j_x : N[x] \to (M_x, E_x)$ induced by a $Q_{<\omega_1^V}$-generic such that

15.1 $\text{crt}(j_x) = \omega_1^{N[x]}$ and $j_x(\omega_1^{N[x]}) = \omega_1^V$,

15.2 $\mathbb{R}^{(M_x, E_x)} = \mathbb{R}^V$,

15.3 $(P(\mathbb{R}))^V \subseteq j_x(\text{Hom}^N_{<\omega_1^V})$.

12
(15.4) \(\forall A \in \text{Hom}^{N[x]}_{<\omega_1^c}, j_x(A) = A^* \),

(15.5) for all successor Woodin cardinals \(\kappa < \omega_1^V \) in \(N[x] \), there is an \(N[x] \)-generic \(H \subset \mathcal{Q}^{N[x]}_{<\kappa} \) inducing a generic elementary embedding \(j_H : N[x] \to \text{Ult}(N[x], E_H) \), and an elementary embedding \(k_H : \text{Ult}(N[x], E_H) \to (M_x, E_x) \) such that \(j_x = k_H \circ j_H \).

(15.6) \(\gamma \) is in the well-founded part of \((M_x, E_x)\).

If overspill occurs, i.e. if there is some \(x \in \mathbb{R}^V \) such that \(P(\mathbb{R})^V \neq j_x(\text{Hom}^{N[x]}_{<\omega_1^V}) \) then (a) holds by the same argument as in Lemma ???. So suppose \(P(\mathbb{R})^V = j_x(\text{Hom}^{N[x]}_{<\omega_1^V}) \) for all \(x \in \mathbb{R}^V \). Then \(j_H(\text{Hom}^{N[x]}_{<\omega_1^V}) = \text{Hom}^{N[x][H]}_{<\omega_1^V} \) for all \(H \) in (15.5) because \(k_H(\text{Hom}^{N[x]}_{<\omega_1^V}(H)) \supset P(\mathbb{R})^V \) and \(j_H(\text{Hom}^{N[x]}_{<\omega_1^V}) \supset \text{Hom}^{N[x][H]}_{<\omega_1^V} \). By varying \(j_x \) and \((M_x, E_x)\) to ensure the filters \(H \) contain any specified condition, we get (b).

If (a) holds in the previous lemma, we’re done with the proof of case 2. So suppose (b) holds.

Lemma 32. \(\text{Hom}^N_{<\omega_1^V} = L(\text{Hom}^N_{<\omega_1^V}) \cap P(\mathbb{R}^N) \)

Proof. We first show:

(16.1) If \(\mathbb{P} \in V^N_{\omega_1^V} \) and \(G \subset \mathbb{P} \) is \(N \)-generic then in \(N[G] \), there is an elementary embedding \(j_G : L(\text{Hom}^N_{<\omega_1^V}) \to (L(\text{Hom}^N_{<\omega_1^V}))^N[G] \) such that \(j_G(\text{Hom}^N_{<\omega_1^V}(G)) = (\text{Hom}^N_{<\omega_1^V})^N[G] \).

To show (16.1), fix \(\mathbb{P} \in V^N_{\omega_1^V} \) and an \(N \)-generic \(G \subset \mathbb{P} \). Fix an increasing sequence \(\langle \delta_i \mid i < \omega \rangle \) of Woodin cardinals in \(N \) bounded below \(\omega_1^V \) and let \(\kappa = \sup \{ \delta_i \mid i < \omega \} > |\mathbb{P}|^N \). Let \(\delta_\omega < \omega_1^V \) be a Woodin cardinal in \(N \) larger than \(\kappa \).

Let \(\sigma \) be the symmetric reals for a \(\text{Col}(\omega, < \kappa) \)-generic over \(N \). Let \(G_\omega \subset \mathcal{Q}_{<\delta_\omega} \) be \(N \)-generic such that for all \(i \), \(G_i = G_\omega \cap \mathcal{Q}_{<\delta_i} \) is \(N \)-generic and \(\sigma = \bigcup \{ \mathcal{R}^N[G_i] \mid i < \omega \} \).

Let, for each \(i < \omega \), \(j_i : N \to M_i \subset N[G_i] \) be the generic elementary embedding given by \(G_i \). Let \(j_{i_1,i_2} : M_{i_1} \to M_{i_2} \) be the induced embeddings for pairs \(i_1 < i_2 \) and \(M^* \) be the corresponding direct limit with associated embedding \(j^* : N \to M^* \). \(M^* \) can be embedded into \(M_\omega \), hence it is well-founded. Also, since \(\text{Hom}^N_{<\omega_1^V} \) is weakly-sealed, \(j_i(\text{Hom}^N_{<\omega_1^V}) = \text{Hom}^N_{<\omega_1^V} \), hence \(j^*(\text{Hom}^N_{<\omega_1^V}) = \text{Hom}^{N(\sigma)}_{<\omega_1^V} \). Using this, we’ll show (16.1).

Using the notation of (16.1), let \(N[G](\tau) \) be a symmetric extension of \(N[G] \) for \(\text{Col}(\omega, < \kappa) \) such that \(N(\sigma) = N[G](\tau) \). Now, \(j^* \) induces an elementary embedding \(j_\sigma : L(\text{Hom}^N_{<\omega_1^V}) \to L(\text{Hom}^N_{<\omega_1^V})^{N(\sigma)} \) such that \(j_\sigma(\text{Hom}^N_{<\omega_1^V}) = \text{Hom}^{N(\sigma)}_{<\omega_1^V} \). Similarly, there is an elementary embedding \(j_\tau : (L(\text{Hom}^N_{<\omega_1^V})^{N[G]} \to (L(\text{Hom}^N_{<\omega_1^V}))^{N[G]}(\tau)) \) such that \(j_\tau(\text{Hom}^N_{<\omega_1^V}) = \text{Hom}^{N[G]}_{<\omega_1^V} \).

But \(N[G](\tau) = N(\sigma) \) so this induces an elementary embedding \(j_G : L(\text{Hom}^N_{<\omega_1^V}) \to (L(\text{Hom}^N_{<\omega_1^V}))^{N[G]} \) such that \(j_G(\text{Hom}^N_{<\omega_1^V}) = \text{Hom}^{N[G]}_{<\omega_1^V} \). This proves (16.1)

Now to see that (16.1) implies the lemma, we need to use Woodin’s tree production
lemma. Suppose for contradiction that $Hom^N_{\omega_1^Y} \neq L(Hom^N_{\omega_1^Y}) \cap P(\mathbb{R}^N)$. Let α be least such that $Hom^N_{\omega_1^Y} \neq L_\alpha(Hom^N_{\omega_1^Y}) \cap P(\mathbb{R}^N) \backslash Hom^N_{\omega_1^Y}$. Let $A \in L_\alpha(Hom^N_{\omega_1^Y}) \cap P(\mathbb{R}^N) \backslash Hom^N_{\omega_1^Y}$ such that N can define A by a formula ϕ with parameters a pair of trees (T, S) representing a $Hom^N_{\omega_1^Y}$ set. It is then easy to check the hypotheses of the tree production lemma hold true for N and ϕ, i.e.

(a) (Generic Absoluteness) Let $\delta < \omega_1^Y$ be Woodin in N, G be $< \delta$-generic over N, and H be $< \delta^+$-generic over $N[G]$. For all $x \in \mathbb{R} \cap N[G]$, $N[G] \models \phi[x, T, S] \iff N[G][H] \models \phi[x, T, S]$.

(b) (Stationary Tower Correctness) Let $\delta < \omega_1^Y$ be Woodin in N, G be $Q_{< \delta}$-generic over N, and $j : N \rightarrow M \subseteq N[G]$ be the induced embedding. Then for all $x \in \mathbb{R} \cap N[G]$, $N[G] \models \phi[x, T, S] \iff M \models \phi[x, j(T), j(S)]$

The tree production lemma then implies that $A \in Hom^N_{\omega_1^Y}$. This is a contradiction. □

This implies that $L(Hom^N_{\omega_1^Y})$ is a counterexample to the theorem in the sense that $L(Hom^N_{\omega_1^Y}) \models AD^+$ but no $A \in (P(\mathbb{R}))^{L(Hom^N_{\omega_1^Y})}$ satisfies that $L(A, \mathbb{R}^N) \models \phi[\mathbb{R}^N]$. By induction on Θ of AD^+ models and the fact that $\Theta^{L(Hom^N_{\omega_1^Y})} < \Theta^V$, we have a contradiction. So (b) of Lemma ?? can’t hold; hence, (a) is the only possibility. (Theorem 1)