

Problem 1. Suppose κ is a regular uncountable cardinal. Suppose $(X_\alpha : \alpha < \kappa)$ and $(Y_\alpha : \alpha < \kappa)$ are enumerations of the same collection of subsets of κ . Show that $\Delta_{\alpha < \kappa} X_\alpha = \Delta_{\alpha < \kappa} Y_\alpha$ (mod NS_κ).

Problem 2. Suppose κ is a regular, uncountable cardinal and $\kappa \subseteq A$. Let $\wp_\kappa(A) = \{x \subseteq A \mid |x| < \kappa\}$. A κ -complete filter \mathcal{F} on $\wp_\kappa(A)$ is normal if for every $a \in A$, $\{x \in \wp_\kappa(A) \mid a \in x\} \in \mathcal{F}$ and \mathcal{F} is closed under diagonal intersection (i.e. if $(A_a : a \in A)$ are sets in \mathcal{F} then $\Delta_{a \in A} A_a \in \mathcal{F}$, where $\Delta_{a \in A} A_a = \{x \in \wp_\kappa(A) \mid x \in \bigcap_{a \in x} A_a\}$). A set $X \subseteq \wp_\kappa(A)$ is \mathcal{F} -positive if its complement is not in \mathcal{F} . Show that if g is a function on an \mathcal{F} -positive set such that $g(x) \in [x]^{<\omega}$ for all x , then g is constant on an \mathcal{F} -positive set. (Hint: you should try to assume first the case $g(x) \in x$ for all x .)

Problem 3. Same hypothesis as in the previous problem. Show that if F is a normal κ -complete filter on $\wp_\kappa(A)$ then F contains all closed unbounded sets.

Problem 4. Show that:

- (a) If $\aleph_\omega < 2^{\aleph_0}$ then $\aleph_\omega^{\aleph_0} = 2^{\aleph_0}$.
- (b) If $2^{\aleph_1} = \aleph_2$ and $\aleph_\omega^{\aleph_0} > \aleph_{\omega_1}$, then $\aleph_{\omega_1}^{\aleph_1} = \aleph_\omega^{\aleph_0}$.
- (c) If κ is a singular cardinal such that $2^{\text{cof}(\kappa)} < \kappa \leq \lambda^{\text{cof}(\kappa)}$ for some $\lambda < \kappa$, then $\beth(\kappa) = \beth(\lambda)$ for the least λ such that $\kappa \leq \lambda^{\text{cof}(\kappa)}$.

Problem 5. Suppose κ is singular cardinal. Show that there is no κ -complete, non-principal filter on κ .

Problem 6. Show that if \mathcal{F} is a non-principal, normal, uniform filter on κ , a regular, uncountable cardinal. Then \mathcal{F} is κ -complete and contains all club sets in κ . Here \mathcal{F} is uniform if it contains all sets of the form (α, κ) for $\alpha < \kappa$ and normal if it is closed under diagonal intersections.