

Problem 1. Prove that the club filter on $\wp_\kappa(\lambda)$, where κ is a regular, uncountable cardinal and $\lambda \geq \kappa$ is a cardinal, is κ -complete and normal (in the sense defined in class).

Problem 2. Prove that a subset A of ω_1 is club in ω_1 if and only if A is club in $\wp_{\omega_1}(\omega_1)$.

Problem 3. Suppose $M, N \models \text{ZFC}$ and are transitive. Suppose $j : M \rightarrow N$ is a nontrivial elementary embedding. Prove that:

- (a) There is an ordinal α such that $j(\alpha) \neq \alpha$.
- (b) For every ordinal α , $j(\alpha) \geq \alpha$.
- (c) Let α be the least such that $j(\alpha) \neq \alpha$, and hence $j(\alpha) > \alpha$. Show that α is a cardinal of M .

Problem 4. Let $j : V \rightarrow M$ be nontrivial elementary; here M is a transitive class of V . Let κ be the least ordinal α such that $j(\alpha) \neq \alpha$ (as followed from the previous problem). Let

$$U_j = \{A \subseteq \kappa \mid \kappa \in j(A)\}.$$

Show U_j is a normal, κ -complete, nonprincipal ultrafilter on κ .

Problem 5. Show that if κ is the least strongly inaccessible cardinal such that κ is the κ^{th} inaccessible. Show that κ is not Mahlo.