SOLUTIONS TO SELECTED PROBLEMS FROM HOMEWORK 5

Additional problem 1: (We assume the sets A, B are nonempty. Otherwise, there is nothing to do.) Given injection $f: A \rightarrow B$, one can define surjection $g: B \rightarrow A$ by $g=f^{-1} \cup h$ where $h: B \backslash r n g(f) \rightarrow A$ by fixing some $a \in A$ and let $h(x)=a$ for all $x \in B \backslash \operatorname{rng}(f)$ if $B \backslash r n g(f)$ is nonempty; if $B=r n g(f)$ then simply let $g=f^{-1}$.

Let $g: B \rightarrow A$ be surjective. For each $a \in A$, choose an element $b_{a} \mathrm{~b}$ of $g^{-1}(a)$; recall $g^{-1}(a)=\{b \in B: g(b)=a\}$. Notice that if $a_{0} \neq a_{1}$ then $g^{-1}\left(a_{0}\right) \cap g^{-1}\left(a_{1}\right)=\emptyset$ because g is a function. Indeed any $c \in g^{-1}\left(a_{0}\right) \cap g^{-1}\left(a_{1}\right)$ would have the property that $g(c)=a_{0} \neq a_{1}=g(c)$. Of course, this violates the fact that g is a function.

Now define $f: A \rightarrow B$ as: $f(a)=b_{a}$. Since if $a_{0} \neq a_{1}$, then $b_{a_{0}} \neq b_{a_{1}}$, we get that f is injective.

Additional problem 2: Let $C=r n g(f)=\{b \in B: \exists a \in A f(a)=b\}$. By $\operatorname{dom}\left(f^{-1}\right)$, I mean the set C. This simply means that f^{-1} is defined only on C.

Assume f is one-to-one. We want to see that f^{-1} is a function from C to A. To see that f^{-1} is a function. Suppose not. This means there is some $b \in C$ such that there are distinct $x, y \in A$ such that $f^{-1}(b)=x$ and $f^{-1}(b)=y$. In other words, $f(x)=b=f(y)$. This contradicts the fact that f is one-to-one. So f^{-1} is indeed a function.

Now assume f is onto but not one-to-one. So in this case $C=B$. But f^{-1} is NOT a function (from C to B). The reasoning is almost the same as above. Let x, y be distinct such that $f(x)=f(y)=b ; x, y$ exist because we assume f is not one-to-one. By definition, $(x, b) \in f$ so $(b, x) \in f^{-1}$ and similarly, $(b, y) \in f^{-1}$. This means the element b is "mapped" by f^{-1} to two distinct elements x, y. So f^{-1} is not a function.

Problem 5.1.1:

(a) The recurrence relation is: $h_{n+1}=h_{n}+n$. Note that $h_{1}=0$.
(b) The formula for h_{n} in terms of n is: for $n \geq 1, h_{n}=\sum_{i=0}^{n-1} i=\frac{n(n-1)}{2}$.

One way you can prove this is to observe that we know the formula for $\sum_{i=0}^{n} i$ is $\frac{n(n+1)}{2}$, so the sum

$$
h_{n}=\sum_{i=0}^{n-1} i=\sum_{i=0}^{n} i-n=\frac{n(n+1)}{2}-n=\frac{n(n-1)}{2} .
$$

Problem 5.2.2:

Base case: when $n=0, \sum_{j=0}^{0} 2^{j}=2^{0}=1$. On the other hand, $2^{0+1}-1=2-1=1$. So these values are equal. We're done with the base case.

Inductive step: We show $\forall n \geq 0\left(\sum_{j=0}^{n} 2^{j}=2^{n+1}-1 \Rightarrow \sum_{j=0}^{n+1} 2^{j}=2^{n+1+1}-1\right)$.
So we fix $n \geq 0$ and assume $\sum_{j=0}^{n} 2^{j}=2^{n+1}-1$ (this is our inductive hypothesis). We show

$$
\sum_{j=0}^{n+1} 2^{j}=2^{n+1+1}-1 .
$$

$\sum_{j=0}^{n+1} 2^{j}=2^{0}+2^{1}+\ldots 2^{n}+2^{n+1}=\sum_{j=0}^{n} 2^{j}+2^{n+1}$.
Now applying the inductive hypothesis, we have:

$$
\sum_{j=0}^{n+1} 2^{j}=\left(2^{n+1}-1\right)+2^{n+1}=2.2^{n+1}-1=2^{n+2}-1
$$

as desired.
Problem 5.2.7 (a): The formula for the sum of the first n odd numbers is:

$$
\sum_{i=1}^{n}(2 i-1)=1+3+5+\cdots+(2 n-1)=n^{2} .
$$

Proof by induction that the above formula is true for all $n \geq 1$.
Base case: $n=1$. $\sum_{i=1}^{1}(2 i-1)=1=1^{2}$. So the base case holds.
Inductive step: We need to show: $\forall n \geq 1\left(\sum_{i=1}^{n}(2 i-1)=n^{2} \Rightarrow \sum_{i=1}^{n+1}(2 i-1)=(n+1)^{2}\right)$.
So fix $n \geq 1$ and assume $\sum_{i=1}^{n}(2 i-1)=n^{2}$. We need to show

$$
\sum_{i=1}^{n+1}(2 i-1)=(n+1)^{2} .
$$

Now, $\sum_{i=1}^{n+1}(2 i-1)=\sum_{i=1}^{n}(2 i-1)+[2 *(n+1)-1]$.
Apply the inductive hypothesis, we have:

$$
\sum_{i=1}^{n+1}(2 i-1)=n^{2}+2 *(n+1)-1=n^{2}+2 n+1=(n+1)^{2}
$$

as desired.

