HOMEWORK 6 ANSWER KEYS

Problem 1(a): The statement is FALSE. We shall prove this by contradiction. We suppose (for contradiction) that "There are only finitely many even Fibonacci numbers". Let $a_{1}, a_{2}, \ldots, a_{k}$ be those numbers (we list them in increasing magnitude, so a_{k} is the largest even Fibonacci number). This means: for any n, if $F_{n}>a_{k}$, then F_{n} is odd. Fix an n such that $F_{n}>a_{k}$. So both F_{n} and F_{n+1} are odd. But $F_{n+2}=F_{n}+F_{n+1}$ is then even (being a sum of two odd numbers). This contradict the fact that $F_{n+2}>a_{k}$.

Problem 1(b): We prove this by (strong) induction. Here, the property $P(n)$ is " $F_{n} \leq 2^{n}$ ".
Base case: $n=1 \Rightarrow F_{n}=1 \leq 2^{1}=2 . n=2 \Rightarrow F_{n}=1 \leq 2^{2}=4$.
Inductive step: We prove: $\forall n \geq 1 P(1) \wedge P(2) \cdots \wedge P(n) \wedge P(n+1) \Rightarrow P(n+2)$.
So fix $n \geq 1$ and assume $P(1), P(2), \ldots, P(n), P(n+1)$ hold. We need to show $P(n+2)$ holds, i.e. $F_{n+2} \leq 2^{n+2}$. We know: $F_{n+2}=F_{n}+F_{n+1}$. Using the inductive hypothesis, we know $F_{n} \leq 2^{n}$ and $F_{n+1} \leq 2^{n+1}$. Hence

$$
F_{n+2} \leq 2^{n}+2^{n+1} \leq 2^{n+1}+2^{n+1}=2^{n+2},
$$

as desired.
Problem 2: Let $P(n)$ be the statement " 7 divides $2^{n+2}+3^{2 n+1}$ ".
We want to show " $\forall n \in \mathbb{N} P(n)$ " by minimum counterexample. Suppose the statement fails, i.e.

$$
C=\left\{k \mid 7 \text { divides } 2^{k+1}+3^{2 k+1}\right\} \neq \emptyset .
$$

Let $m=\min (C)$. Note that $m \geq 1$ because 7 divides $2^{0+2}+3^{2 * 0+1}=7$. So we can write $m=k+1$ for $k \geq 0$. By the definition of $m, k \notin C$ (i.e. 7 divides $2^{k+2}+3^{2 k+1}$).

So $2^{m+2}+3^{2 m+1}=2^{k+3}+3^{2 k+3}=2 * 2^{k+2}+9 * 3^{2 k+1}=2 *\left(2^{k+2}+3^{2 k+1}\right)+7 * 3^{2 k+1}$.
By the assumption on $k, 7$ divides $2 *\left(2^{k+2}+3^{2 k+1}\right)$. Obviously, 7 divides $7 * 3^{2 k+1}$. So 7 divides their sum, which is $2^{m+2}+3^{2 m+1}$. This contradicts the assumption that $m \in C$.

I leave this as an easy exercise to do the above argument using induction. All of the main ideas are presented in the proof above; you just have to put them together.

Problem 5.4.1: We prove this by strong induction. $P(n)$ is the statement " 3 divides b_{n} ".
Base case: $n=1: b_{n}=3$ by definition and clearly 3 divides b_{1}.
$n=2: b_{n}=6$ by definition and 3 divides 6 .
Inductive step: We show: $\forall n \in \mathbb{N} P(1) \wedge P(2) \wedge \cdots \wedge P(n) \wedge P(n+1) \Rightarrow P(n+2)$.
Fix $n \in \mathbb{N}$ and assume $P(1) \wedge P(2) \wedge \cdots \wedge P(n) \wedge P(n+1)$ is TRUE. We show $P(n+2)$ is TRUE. This means we want to show 3 divides b_{n+2}. But $b_{n+2}=b_{n}+b_{n+1}$. By the inductive hypothesis, 3 divides b_{n} (this is $P(n)$) and 3 divides b_{n+1} (this is $P(n+1)$). So 3 divides $b_{n}+b_{n+1}=b_{n+2}$ as desired.

Problem 5.3.2: (a) The proof's calculations are correct. The only incorrect thing is it treats
$P(n)$ as if it were a number. The proof writes: " $P(n)=\sum_{k=0}^{n} r^{k}$ " (similarly, " $P(0)=\ldots$ ", " $\mathrm{P}(\mathrm{n}+1)$ $=\ldots "$). Keep in mind that $P(n)$ is a proposition (or statement) about n and $P(n)$ can either be TRUE or FALSE, and it is not a number; so do not write " $P(n)=\ldots$ ".
(b) The proof is as given, you just have to rewrite, e.g. the first line to "Let $P(n)$ be " $\sum_{k=0}^{n} r^{k}=$ $\frac{1-r^{n+1}}{1-r} " "$. And replace " $P(0)=\ldots$ " with " $P(0)$ is $\Sigma_{k=0}^{0} r^{k}=\frac{1-r^{0+1}}{1-r}$, which is true" (similarly for $P(n+1)$).

