MATH 13 HOMEWORK 2 ANSWER KEY

Problem 2.2.11: The statement you have to prove (in if ... then ... form) is:
If $x^{2}+y^{2}$ is even, then x, y have the same parity (i.e. both even or both odd).
We assume $x^{2}+y^{2}$ is even. We prove this by contradiction. Suppose the conclusion fails, namely x, y have different parity.

Without loss of generality, we assume x is odd and y is even (the other case: x is even and y is odd is proved in the same manner, with obvious modifications).

So there is some integer k such that $x=2 k+1$ and some integer l such that $y=2 l$. Hence $x^{2}+y^{2}=(2 k+1)^{2}+(2 l)^{2}=4 k^{2}+4 k+1+4 l^{2}=2\left(2 k^{2}+2 k+2 l^{2}\right)+1$. This is clearly an odd number. Contradiction.

In conclusion, x, y have the same parity.
You could prove this by contrapositive also.
Problem 2.3.3: The statement in question is: $\exists m \in \mathbb{Z} \exists n \in \mathbb{Z} 2 m-3 n=15$.
To prove the statement above, you just have to find a specific pair (m, n) such that $2 m-3 n=15$. Indeed, $m=9, n=1$ would work. There are other examples, like $m=0, n=-5$.

The negation of the above statement is: $\forall m \in \mathbb{Z} \forall n \in \mathbb{Z} 2 m-3 n \neq 15$.
Suppose you wanted to disprove the above statement, this means you wanted. to prove its NEGATION is true. You have to then start with arbitrary m, n and proceed to show $2 m-3 n \neq 15$.

Problem 2.3.15(c): We express the statement " x_{n} does not converge" in mathematical form. First, in English, this statement is equivalent to "for any L, x_{n} does not converge to L ". Now let's write the definition of " x_{n} converges to L " given in the problem in its full mathematical form (notice the hidden quantifier):

$$
\forall \epsilon>0 \exists N \in \mathbb{N} \forall n \in \mathbb{N}\left(n>N \Rightarrow\left|x_{n}-L\right|<\epsilon\right) .
$$

Finally, we can write the original statement as:

$$
\forall L \exists \epsilon>0 \forall N \in \mathbb{N} \exists n \in \mathbb{N}\left(n>N \wedge\left|x_{n}-L\right| \geq \epsilon\right)
$$

Problem 2.3.15(d): We prove $x_{n}=n$ diverges to ∞. By the definition given in the problem, this means we need to verify the statement:

$$
\forall M>0 \exists N \in \mathbb{N}\left(n>N \Rightarrow x_{n}=n>M\right)
$$

We start by fixing an arbitrary $M>0$. Our job is to choose N (typically dependent on M) such that whenever $n>N$, we have x_{n} (which is defined to be n) $>M$.

In this case, we simply choose $N=M$, and verify that with this choice of N, the implication above is true. For any $n>N$, i.e. for any $n>M$, we know $x_{n}=n$, hence $x_{n}>M$. As desired.

Problem 4(a,b): (a) We can write this statement in the if-then form as follows: "for all a, if $a^{3}-10 a+1=0$, then a is not in the interval $[3,5]$ ".
(b) The contrapositive of the statement in (a) is: "for all a, if a is in the interval [3,5] (equiv: $3 \leq a \leq 5$), then $a^{3}-10 a+1 \neq 0$."

