MATH 13 HOMEWORK 3 ANSWER KEY

Problem 3.1.1: Since $17 \equiv 2(\bmod 5)$ and $2^{2} \equiv-1(\bmod 5)$, we have

$$
17^{251} \equiv 2^{251} \equiv 2 * 2^{250} \equiv 2 *\left(2^{2}\right)^{125} \equiv 2 *(-1)^{1} 25 \equiv-2(\bmod 5)
$$

Now $23 \equiv 3 \equiv-2(\bmod 5)$, so

$$
23^{12} \equiv(-2)^{12} \equiv\left((-2)^{2}\right)^{6} \equiv(-1)^{6} \equiv 1(\bmod 5)
$$

Now, $19 \equiv 4 \equiv-1(\bmod 5)$, so

$$
19^{41} \equiv(-1)^{41} \equiv-1(\bmod 5)
$$

Putting it all together, we have

$$
17^{251} * 23^{12}-19^{41} \equiv(-2) * 1-(-1) \equiv-1(\bmod 5)
$$

Problem 3.1.6 (a,b,c):
(a): We need to show that $7 x \equiv 28(\bmod 42) \Rightarrow x \equiv 4(\bmod 6)$. Assume $7 x \equiv 28(\bmod 42)$. Using Theorem 3.6, we get that

$$
42 \mid(7 x-28) .
$$

Since $42=7 * 6$ and $7 x-28=7(x-4)$, the above can be written as

$$
7 * 6 \mid 7(x-4) .
$$

This means $7(x-4)=7 * 6 * k$ for some integer k. By cancellation, $x-4=6 * k$; in other words,

$$
6 \mid(x-4)
$$

Applying Theorem 3.6 again, we get $x \equiv 4(\bmod 6)$ as desired.
(b): The question asks whether there is an x such that $7 x \equiv 28(\bmod 42)$ and $x \equiv 4(\bmod 42)$. The answer is YES. $x=4$ satisfies the requirement.
(c): It is NOT always the case that for any x, if $7 x \equiv 28(\bmod 42)$, then $x \equiv 4(\bmod 42)$. For example if $x=10$, then $7 x=70 \equiv 28(\bmod 42)$, but $\neg(10 \equiv 4(\bmod 42))$.

Problem 3.1.1 and 3.1.2 (b): The $\operatorname{gcd}(100,36)=4$. And $4=4 * 100-11 * 36$. This is just using the Euclidean algorithm. I leave the details to you.

Problem 3.2.9: Let m, n be arbitrary integers.
(\Rightarrow) : Assume $\operatorname{gcd}(m, n)=1$. Then by Corollary 3.12, there are integers x, y such that $g c d(m, n)=m x+n y$. Since $\operatorname{gcd}(m, n)=1$, we have $1=m x+n y$.
(\Leftarrow) : Assume there are integers x, y such that $m x+n y=1$. We want to show $\operatorname{gcd}(m, n)=1$.
Let $d=\operatorname{gcd}(m, n)$. So there are integers k, l such that $m=k * d$ and $n=l * d$. So $m x+n y=$ $d *(k x+l y)$. This implies $d \mid(m x+n y)$. So $d \mid 1$. The only positive integer that divides 1 is 1 itself. Hence $d=1$ as desired.

Problem 3.2.11: We will apply the Euclidean algorithm to find $\operatorname{gcd}(12 n+5,5 n+2)$. But first, we need some observation:

$$
12 n+5 \geq 5 n+2 \Leftrightarrow 7 n \geq-3 \Leftrightarrow n \geq-3 / 7 .
$$

Since n is an integer, $n \geq-3 / 7 \Leftrightarrow n \geq 0$. So we have that

$$
12 n+5 \geq 5 n+2 \Leftrightarrow n \geq 0
$$

So for any integer $n \geq 0$, we know $12 n+5 \geq 5 n+2$, applying the Euclidean algorithm:

$$
12 n+5=2(5 n+2)+(2 n+1) 5 n+2=2(2 n+1)+n
$$

Now if $n=0$, then we know $12 n+5=5$ and $5 n+2=2$ and $\operatorname{gcd}(2,5)=1$, so we're done. If $n>0$, we continue with the Euclidean algorithm

$$
2 n+1=2(n)+1 n=n(1)+0
$$

So we again conclude that $1=\operatorname{gcd}(12 n+5,5 n+2)$.
That takes care of the case $n \geq 0$. Now suppose $n<0$ (so the absolute value $|n|>0$), so we know $12 n+5<5 n+2<0$, but then $|12 n+5|>|5 n+2|>0$. Since $\operatorname{gcd}(12 n+5,5 n+2)=$ $\operatorname{gcd}(|12 n+5|,|5 n+2|)=\operatorname{gcd}(12|n|+5,5|n|+2)$, we apply the Euclidean algorithm in the previous argument to $12|n|+5$ and $5|n|+2$ and conclude again $\operatorname{gcd}(12|n|+5,5|n|+2)=1$.

