MATH 13 HOMEWORK 4 ANSWER KEY

Problem 2(a): (\Leftarrow) : We assume $d \mid c$. By our assumption, let $\left(x_{0}, y_{0}\right)$ be an integer solution to $a x+b y=d$. So $x_{0}, y_{0} \in \mathbb{Z}$ and

$$
\begin{equation*}
a x_{0}+b y_{0}=d . \tag{0.1}
\end{equation*}
$$

Since $d \mid c$, there is an integer k such that $c=k d$. Multiply both sides of Equation 0.1 by k, we get

$$
\begin{equation*}
a\left(k x_{0}\right)+b\left(k y_{0}\right)=c . \tag{0.2}
\end{equation*}
$$

Since $k x_{0}, k y_{0} \in \mathbb{Z}$, we have shown that $a x+b y=c$ has integer solutions.
(\Rightarrow) : Now assume $a x+b y=c$ has an integer solution. Let $\left(x_{0}, y_{0}\right)$ be such a solution. Since $d|a, d| a x$. Similarly, $d \mid b y$. So $d \mid(a x+b y)$. So $d \mid c$.

Problem 4.1.1(e): First, we list out the elements of the set $A=\left\{x \in \frac{1}{2} \mathbb{Z}: 0 \leq x \leq 4\right\}$. $A=\{0,1 / 2,1,3 / 2,2,5 / 2,3,7 / 2,4\}$. Then we check for each $x \in A$, whether $4 x^{2} \in 2 \mathbb{Z}+1$. It is easy to see that this property holds for $x=1 / 2,3 / 2,5 / 2,7 / 2$. So the set

$$
\left\{x \in \frac{1}{2} \mathbb{Z}: 0 \leq x \leq 4 \text { and } 4 x^{2} \in 2 \mathbb{Z}+1\right\}=\{1 / 2,3 / 2,5 / 2,7 / 2\} .
$$

Problem 4.2.5(d): $[10]=\{\ldots,-10,-5,0,5,10, \ldots\}$. In other words, $[10]$ is the set of integers which are divisible by 5 . By definition, for all $x \in \mathbb{Z}, x \in M_{[10]}$ iff $-x \in[10]$. But we know $5 \mid x$ iff $5 \mid(-x)$. So $M_{[10]}=[10]$.

Problem 4.3.5: (\Rightarrow) : Assume $B \backslash A=B$. This means $B \cap A^{c}=B$. This implies that $B \subseteq A^{c}$. To see this, let $x \in B$. Since $B=B \cap A^{c}, x \in B \cap A^{c}$; hence $x \in A^{c}$. So for each $x \in B, x \notin A$. In other words, $A \cap B=\emptyset$.
(\Leftarrow) : Suppose $A \cap B=\emptyset$. This implies, for each $x \in B, x \notin A$, so $x \in A^{c}$. Hence $B \subseteq A^{c}$. This in turn imlies $B \cap A^{c}=B$. This means $B \backslash A=B$.

Problem 4.4.9: Suppose $g \circ f$ is injective. We show f is injective. Let $x_{1} \neq x_{2} \in \operatorname{dom}(f)$. We show $f\left(x_{1}\right) \neq f\left(x_{2}\right)$. Suppose not. Then $f\left(x_{1}\right)=f\left(x_{2}\right)$. Since g is a function, $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$. This means $g \circ f\left(x_{1}\right)=g \circ f\left(x_{2}\right)$, while $x_{1} \neq x_{2}$. This contradicts the fact that $g \circ f$ is injective. So it must be the case that $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

