Homework 6

NAME: Alberto Takase

E-MAIL: atakase@uci.edu

Problem 1. Let $\mathcal{L} = \{E\}$ be the language of graphs (recall the definition of a graph discussed in elass discussion section).

Express each of the following statements about graphs as a set (possibly infinite) of sentences in \mathcal{L} . That is, in each of the following cases find a set of \mathcal{L} -sentences Σ such that for every graph G,

G has the named property iff $G \models \Sigma$.

- (a) "G contains arbitrarily large finite cliques."
- (b) "G consists of disjoint cycles."
- (c) "Any two nodes in G have the same degree."

Prove that there is no set Σ (possibly infinite) of \mathcal{L} -sentences such that for every graph G = (V, E) (so G is an \mathcal{L} -structure), the following holds:

 $G \models \Sigma$ if and only if G has finitely many cliques of size 5

Solution.

(a) Observe "G contains arbitrarily large finite cliques" is equivalent to "G contains a clique of size n for every natural number n." Define $\Sigma := \{\varphi_n : n \in \mathbb{N}_{\geq 1}\}$ by

$$\varphi_n \coloneqq$$
 "there exists a clique of size n "
 $\coloneqq (\exists r_1) \quad (\exists r_2)$ "r: for $1 \le i \le n$ form a clique"

. .

.....

$$\coloneqq (\exists x_1) \dots (\exists x_n) \begin{bmatrix} \lambda_i, \text{ for } 1 \leq i \leq n, \text{ form } a \text{ clique} \\ \vdots = (\exists x_1) \dots (\exists x_n) \begin{bmatrix} \bigwedge_{i \neq j} (x_i \neq x_j) \land \bigwedge_{i \neq j} (\dot{E}x_i x_j) \end{bmatrix}.$$

(b) Define $\Sigma \coloneqq \{\Phi_n : n \in \mathbb{N}_{>3}\}$ by

 $\varphi_n(x) \coloneqq x$ is in a cycle of length n and the cycle is disjoint from the rest of the nodes"

:= "x is in a cycle of length n and the cycle is disjoint from the rest of the nodes"

$$\coloneqq (\exists x_1) \dots (\exists x_n)^{``} \{x_1, \dots, x_n\} \text{ is a cycle of length } n \text{ and } x = x_1 \\ \text{and the cycle is disjoint from the rest of the nodes''} \\ \coloneqq (\exists x_1) \dots (\exists x_n) \left[\bigwedge_{i=1}^{n-1} (\dot{E}x_i x_{i+1}) \land \dot{E}x_n x_1 \land x = x_1 \land \text{``the cycle is disjoint from the rest of the}_{\text{nodes''}} \right] \\ \coloneqq (\exists x_1) \dots (\exists x_n) \left[\bigwedge_{i=1}^{n-1} (\dot{E}x_i x_{i+1}) \land \dot{E}x_n x_1 \land x = x_1 \land (\forall y) \left[\bigwedge_{i=2}^{n-1} ((\dot{E}y x_i \land y \neq x_{i-1}) \to y = x_{i+1}) \land ((\dot{E}y x_1 \land y \neq x_n) \to y = x_2) \right] \right]$$

and $\Phi_n \coloneqq (\forall x) [\bigvee_{i=1}^n \varphi_n(x)].$

(c) Define $\Sigma \coloneqq \{\Phi_n : n \in \mathbb{N}\}$ by

 $\varphi_n(x,y) := "x \text{ and } y \text{ have degree } n"$:= "x has degree n" \land "y has degree n"

and "z has degree 0" is defined to be " $(\forall v) [\neg Evz]$ " and for $n \ge 1$,

"z has degree
$$n$$
" := $(\exists x_1) \dots (\exists x_n) \left[\bigwedge_{i \neq j} (x_i \neq x_j) \land \bigwedge_{i=1}^n (\dot{E}x_i z) \land (\forall w) \left[\dot{E}wz \to \bigvee_{i=1}^n (w = x_i) \right] \right]$

and
$$\Phi_n \coloneqq \bigvee_{i=1}^n (\forall x) (\forall y) [\varphi_n(x, y)].$$

By contradiction, suppose a set Σ of \mathcal{L} -sentences exists such that for each graph G,

 $G \models \Sigma$ if and only if G has finitely many cliques of size 5

Define Δ to be the set of sentences φ_n stating that there exist at least n distinct cliques of size 5. Observe $\Delta = \{\varphi_n\}$ is infinite. Consider the union $\Sigma \cup \Delta$. Observe the union is finitely satisfiable, because for each finite subset $\Delta_0 \subseteq \Sigma \cup \Delta$, there exists a model satisfying the sentences (or axioms) in Δ_0 . By the compactness theorem, there exists a model \mathfrak{M} satisfying every sentence (or axiom) in the entire set $\Sigma \cup \Delta$. Observe $\mathfrak{M} \vDash \varphi_n$ for every n. Therefore \mathfrak{M} is a model satisfying every axiom in Σ but \mathfrak{M} does not have finitely many cliques of size 5—contradiction. As a result, Σ cannot exist. **Problem 3.** Let $\mathcal{L} = \{P\}$ be a language with one 2-ary relation symbol P. Let $\mathcal{M} = (\mathbb{Z}, P^{\mathcal{M}})$ be an \mathcal{L} -structure. Here \mathbb{Z} is the set of integers and for all $a, b \in \mathbb{Z}$,

$$(a,b) \in P^{\mathcal{M}} \Leftrightarrow |b-a| = 1.$$

Show that there is an elementary equivalent \mathcal{L} -structure $\mathcal{N} = (N, P^{\mathcal{N}})$ (i.e. $\mathcal{M} \equiv \mathcal{N}$) that is not connected. Hint: Add constant symbols c, d to the language \mathcal{L} . Write down the sentences which say that c and d are "far apart." Apply compactness theorem to this set of sentences.

Solution. Define $\mathscr{L} := \mathcal{L} \cup \{c, d\}$ where c and d are distinct symbols not in \mathcal{L} . Observe \mathscr{L} is a more expressive language than \mathcal{L} ; that is to say, formulae φ and terms t in \mathscr{L} can utilize the constant symbols c and d. Define $\Sigma = \{\varphi : \varphi \text{ is an } \mathcal{L}\text{-sentence and } \mathcal{M} \models \varphi\}$. Observe every $\varphi \in \Sigma$ cannot have the symbols c and d. Define Δ to be the set of sentences φ_n stating that there does not exist n distinct elements x_1, \ldots, x_n such that $c = x_1$ and $d = x_n$ and for $1 \leq i \leq n$, Px_ix_{i+1} . Observe φ_n is an \mathscr{L} -sentence which guarantees that c and d are at least n + 1 distance apart. Consider the union $\Sigma \cup \Delta$.

Claim. The union is finitely satisfiable.

Let $\Delta_0 \subseteq \Sigma \cup \Delta$ be finite. For each natural number *n*, define $\mathcal{M}_n \coloneqq (\mathbb{Z}, P^{\mathcal{M}_n}, c^{\mathcal{M}_n}, d^{\mathcal{M}_n})$ by

- $P^{\mathcal{M}_n} = P^{\mathcal{M}}$.
- $c^{\mathcal{M}_n} = -2^n$.
- $d^{\mathcal{M}_n} = 2^n$.

Because Δ_0 is finite, there exists a finite enumeration $\{\sigma_1, \ldots, \sigma_p, \delta_1, \ldots, \delta_q\}$ of Δ_0 where

- $\sigma_i \in \Sigma$ for every $i \leq p$.
- $\delta_i \in \Delta$ for every $i \leq q$.
- Δ_0 can have no elements of Σ ; in which case, p = 0.
- Δ_0 can have no elements of Δ ; in which case, q = 0.

Because $\delta_i \in \Delta$, there exists m_i such that δ_i and φ_{m_i} are equal. Define $\mathfrak{m} := \max\{m_1, \ldots, m_q, 0\}$. Observe $\mathcal{M}_{\mathfrak{m}}$ believes that c and d are $2^{\mathfrak{m}+1}$ distance part. Observe $2^{\mathfrak{m}+1} > \mathfrak{m}$. Therefore $\mathcal{M}_{\mathfrak{m}} \models \delta_i$ for every $i \leq q$. Observe σ_i are sentences which do not use the symbols c and d, and $\mathcal{M} \models \sigma_i$. Observe $\mathcal{M}_{\mathfrak{m}}$ has the same domain as \mathcal{M} and $\mathcal{M}_{\mathfrak{m}}$ interprets P exactly the same. Therefore $\mathcal{M}_{\mathfrak{m}} \models \sigma_i$ for every $i \leq p$. Therefore $\mathcal{M}_{\mathfrak{m}} \models \Delta_0$. That is to say, Δ_0 is satisfiable. As a result, the union is finitely satisfiable.

By the compactness theorem, the union is satisfiable. That is to say, there exists an \mathscr{L} -structure \mathfrak{M} such that $\mathfrak{M} \models \Sigma \cup \Delta$.

Claim. \mathfrak{M} and \mathcal{M} are elementarily equivalent. That is to say, for each \mathcal{L} -sentence φ , $\mathfrak{M} \vDash \varphi$ iff $\mathcal{M} \vDash \varphi$. Let φ be an arbitrary \mathcal{L} -sentence.^[1]

- (⇒) Assume $\mathfrak{M} \models \varphi$. Therefore $\mathfrak{M} \models \neg \neg \varphi$. Therefore $\mathfrak{M} \nvDash \neg \varphi$. By contradiction, suppose $\mathcal{M} \nvDash \varphi$. Therefore $\mathcal{M} \models \neg \varphi$. Therefore $\neg \varphi \in \Sigma$. Because $\mathfrak{M} \models \Sigma$, $\mathfrak{M} \models \neg \varphi$ —contradiction. Therefore $\mathcal{M} \models \varphi$.
- (\Leftarrow) Assume $\mathcal{M} \vDash \varphi$. Therefore $\varphi \in \Sigma$. Because $\mathfrak{M} \vDash \Sigma, \mathfrak{M} \vDash \varphi$.

Claim. \mathfrak{M} is not connected.

Because $\mathfrak{M} \models \Delta$, for each natural number $n, \mathfrak{M} \models \varphi_n$. Therefore $c^{\mathfrak{M}}$ and $d^{\mathfrak{M}}$ are not connected. Therefore \mathfrak{M} is not connected.

^[1]The reason φ cannot be an \mathscr{L} -sentence is because \mathcal{M} has no interpretation for c and d. Recall an \mathscr{L} -sentence may have the symbols c and d.