Name: Alberto Takase

## E-MAIL: atakase@uci.edu

Problem 1. Let $\mathcal{L}=\{\dot{E}\}$ be the language of graphs (recall the definition of a graph discussed in elass discussion section).

Express each of the following statements about graphs as a set (possibly infinite) of sentences in $\mathcal{L}$. That is, in each of the following cases find a set of $\mathcal{L}$-sentences $\Sigma$ such that for every graph $G$,
$G$ has the named property iff $G \vDash \Sigma$.
(a) " $G$ contains arbitrarily large finite cliques."
(b) " $G$ consists of disjoint cycles."
(c) "Any two nodes in $G$ have the same degree."

Prove that there is no set $\Sigma$ (possibly infinite) of $\mathcal{L}$-sentences such that for every graph $G=(V, E)$ (so $G$ is an $\mathcal{L}$-structure), the following holds:
$G \vDash \Sigma$ if and only if $G$ has finitely many cliques of size 5

## Solution.

(a) Observe " $G$ contains arbitrarily large finite cliques" is equivalent to " $G$ contains a clique of size $n$ for every natural number $n$." Define $\Sigma:=\left\{\varphi_{n}: n \in \mathbb{N}_{\geq 1}\right\}$ by

$$
\begin{aligned}
\varphi_{n} & :=\text { "there exists a clique of size } n " \\
& :=\left(\exists x_{1}\right) \ldots\left(\exists x_{n}\right) \text { " } x_{i} \text {, for } 1 \leq i \leq n, \text { form a clique" } \\
& :=\left(\exists x_{1}\right) \ldots\left(\exists x_{n}\right)\left[\bigwedge_{i \neq j}\left(x_{i} \neq x_{j}\right) \wedge \bigwedge_{i \neq j}\left(\dot{E} x_{i} x_{j}\right)\right] .
\end{aligned}
$$

(b) Define $\Sigma:=\left\{\Phi_{n}: n \in \mathbb{N}_{\geq 3}\right\}$ by
$\varphi_{n}(x):=$ " $x$ is in a cycle of length $n$ and the cycle is disjoint from the rest of the nodes"
$:=$ " $x$ is in a cycle of length $n$ and the cycle is disjoint from the rest of the nodes"
$:=\left(\exists x_{1}\right) \ldots\left(\exists x_{n}\right)$ " $\left\{x_{1}, \ldots, x_{n}\right\}$ is a cycle of length $n$ and $x=x_{1}$ and the cycle is disjoint from the rest of the nodes"
$:=\left(\exists x_{1}\right) \ldots\left(\exists x_{n}\right)\left[\bigwedge_{i=1}^{n-1}\left(\dot{E} x_{i} x_{i+1}\right) \wedge \dot{E} x_{n} x_{1} \wedge x=x_{1} \wedge\right.$ "the cycle is disjoint from the rest of the $\left.{ }_{\text {nodes" }}\right]$
$:=\left(\exists x_{1}\right) \ldots\left(\exists x_{n}\right)\left[\bigwedge_{i=1}^{n-1}\left(\dot{E} x_{i} x_{i+1}\right) \wedge \dot{E} x_{n} x_{1} \wedge x=x_{1} \wedge\right.$

$$
\left.(\forall y)\left[\bigwedge_{i=2}^{n-1}\left(\left(\dot{E} y x_{i} \wedge y \neq x_{i-1}\right) \rightarrow y=x_{i+1}\right) \wedge\left(\left(\dot{E} y x_{1} \wedge y \neq x_{n}\right) \rightarrow y=x_{2}\right)\right]\right]
$$

and $\Phi_{n}:=(\forall x)\left[\bigvee_{i=1}^{n} \varphi_{n}(x)\right]$.
(c) Define $\Sigma:=\left\{\Phi_{n}: n \in \mathbb{N}\right\}$ by

$$
\begin{aligned}
\varphi_{n}(x, y) & :=" x \text { and } y \text { have degree } n " \\
& :=" x \text { has degree } n " \wedge " y \text { has degree } n "
\end{aligned}
$$

and " $z$ has degree 0 " is defined to be " $(\forall v)[\neg \dot{E} v z]$ " and for $n \geq 1$,

$$
\text { " } z \text { has degree } n \text { " }:=\left(\exists x_{1}\right) \ldots\left(\exists x_{n}\right)\left[\bigwedge_{i \neq j}\left(x_{i} \neq x_{j}\right) \wedge \bigwedge_{i=1}^{n}\left(\dot{E} x_{i} z\right) \wedge(\forall w)\left[\dot{E} w z \rightarrow \bigvee_{i=1}^{n}\left(w=x_{i}\right)\right]\right]
$$

and $\Phi_{n}:=\bigvee_{i=1}^{n}(\forall x)(\forall y)\left[\varphi_{n}(x, y)\right]$.
By contradiction, suppose a set $\Sigma$ of $\mathcal{L}$-sentences exists such that for each graph $G$,

$$
G \vDash \Sigma \text { if and only if } G \text { has finitely many cliques of size } 5
$$

Define $\Delta$ to be the set of sentences $\varphi_{n}$ stating that there exist at least $n$ distinct cliques of size 5 . Observe $\Delta=\left\{\varphi_{n}\right\}$ is infinite. Consider the union $\Sigma \cup \Delta$. Observe the union is finitely satisfiable, because for each finite subset $\Delta_{0} \subseteq \Sigma \cup \Delta$, there exists a model satisfying the sentences (or axioms) in $\Delta_{0}$. By the compactness theorem, there exists a model $\mathfrak{M}$ satisfying every sentence (or axiom) in the entire set $\Sigma \cup \Delta$. Observe $\mathfrak{M} \vDash \varphi_{n}$ for every $n$. Therefore $\mathfrak{M}$ is a model satisfying every axiom in $\Sigma$ but $\mathfrak{M}$ does not have finitely many cliques of size 5 -contradiction. As a result, $\Sigma$ cannot exist.

Problem 3. Let $\mathcal{L}=\{P\}$ be a language with one 2-ary relation symbol $P$. Let $\mathcal{M}=\left(\mathbb{Z}, P^{\mathcal{M}}\right)$ be an $\mathcal{L}$-structure. Here $\mathbb{Z}$ is the set of integers and for all $a, b \in \mathbb{Z}$,

$$
(a, b) \in P^{\mathcal{M}} \Leftrightarrow|b-a|=1
$$

Show that there is an elementary equivalent $\mathcal{L}$-structure $\mathcal{N}=\left(N, P^{\mathcal{N}}\right)$ (i.e. $\left.\mathcal{M} \equiv \mathcal{N}\right)$ that is not connected. Hint: Add constant symbols $c, d$ to the language $\mathcal{L}$. Write down the sentences which say that $c$ and $d$ are "far apart." Apply compactness theorem to this set of sentences.

Solution. Define $\mathscr{L}:=\mathcal{L} \cup\{c, d\}$ where $c$ and $d$ are distinct symbols not in $\mathcal{L}$. Observe $\mathscr{L}$ is a more expressive language than $\mathcal{L}$; that is to say, formulae $\varphi$ and terms $t$ in $\mathscr{L}$ can utilize the constant symbols $c$ and $d$. Define $\Sigma=\{\varphi: \varphi$ is an $\mathcal{L}$-sentence and $\mathcal{M} \vDash \varphi\}$. Observe every $\varphi \in \Sigma$ cannot have the symbols $c$ and $d$. Define $\Delta$ to be the set of sentences $\varphi_{n}$ stating that there does not exist $n$ distinct elements $x_{1}, \ldots, x_{n}$ such that $c=x_{1}$ and $d=x_{n}$ and for $1 \leq i \leq n, P x_{i} x_{i+1}$. Observe $\varphi_{n}$ is an $\mathscr{L}$-sentence which guarantees that $c$ and $d$ are at least $n+1$ distance apart. Consider the union $\Sigma \cup \Delta$.

Claim. The union is finitely satisfiable.
Let $\Delta_{0} \subseteq \Sigma \cup \Delta$ be finite. For each natural number $n$, define $\mathcal{M}_{n}:=\left(\mathbb{Z}, P^{\mathcal{M}_{n}}, c^{\mathcal{M}_{n}}, d^{\mathcal{M}_{n}}\right)$ by

- $P^{\mathcal{M}_{n}}=P^{\mathcal{M}}$.
- $c^{\mathcal{M}_{n}}=-2^{n}$.
- $d^{\mathcal{M}_{n}}=2^{n}$.

Because $\Delta_{0}$ is finite, there exists a finite enumeration $\left\{\sigma_{1}, \ldots, \sigma_{p}, \delta_{1}, \ldots, \delta_{q}\right\}$ of $\Delta_{0}$ where

- $\sigma_{i} \in \Sigma$ for every $i \leq p$.
- $\delta_{i} \in \Delta$ for every $i \leq q$.
- $\Delta_{0}$ can have no elements of $\Sigma$; in which case, $p=0$.
- $\Delta_{0}$ can have no elements of $\Delta$; in which case, $q=0$.

Because $\delta_{i} \in \Delta$, there exists $m_{i}$ such that $\delta_{i}$ and $\varphi_{m_{i}}$ are equal. Define $\mathfrak{m}:=\max \left\{m_{1}, \ldots, m_{q}, 0\right\}$. Observe $\mathcal{M}_{\mathfrak{m}}$ believes that $c$ and $d$ are $2^{\mathfrak{m}+1}$ distance part. Observe $2^{\mathfrak{m}+1}>\mathfrak{m}$. Therefore $\mathcal{M}_{\mathfrak{m}} \vDash \delta_{i}$ for every $i \leq q$. Observe $\sigma_{i}$ are sentences which do not use the symbols $c$ and $d$, and $\mathcal{M} \vDash \sigma_{i}$. Observe $\mathcal{M}_{\mathfrak{m}}$ has the same domain as $\mathcal{M}$ and $\mathcal{M}_{\mathfrak{m}}$ interprets $P$ exactly the same. Therefore $\mathcal{M}_{\mathfrak{m}} \vDash \sigma_{i}$ for every $i \leq p$. Therefore $\mathcal{M}_{\mathfrak{m}} \vDash \Delta_{0}$. That is to say, $\Delta_{0}$ is satisfiable. As a result, the union is finitely satisfiable.

By the compactness theorem, the union is satisfiable. That is to say, there exists an $\mathscr{L}$-structure $\mathfrak{M}$ such that $\mathfrak{M} \vDash \Sigma \cup \Delta$.

Claim. $\mathfrak{M}$ and $\mathcal{M}$ are elementarily equivalent. That is to say, for each $\mathcal{L}$-sentence $\varphi, \mathfrak{M} \vDash \varphi$ iff $\mathcal{M} \vDash \varphi$.
Let $\varphi$ be an arbitrary $\mathcal{L}$-sentence. ${ }^{[1]}$
$(\Rightarrow)$ Assume $\mathfrak{M} \vDash \varphi$. Therefore $\mathfrak{M} \vDash \neg \neg \varphi$. Therefore $\mathfrak{M} \not \vDash \neg \varphi$. By contradiction, suppose $\mathcal{M} \not \vDash \varphi$. Therefore $\mathcal{M} \vDash \neg \varphi$. Therefore $\neg \varphi \in \Sigma$. Because $\mathfrak{M} \vDash \Sigma, \mathfrak{M} \vDash \neg \varphi$-contradiction. Therefore $\mathcal{M} \vDash \varphi$.
$(\Leftarrow)$ Assume $\mathcal{M} \vDash \varphi$. Therefore $\varphi \in \Sigma$. Because $\mathfrak{M} \vDash \Sigma, \mathfrak{M} \vDash \varphi$.

Claim. $\mathfrak{M}$ is not connected.
Because $\mathfrak{M} \vDash \Delta$, for each natural number $n, \mathfrak{M} \vDash \varphi_{n}$. Therefore $c^{\mathfrak{M}}$ and $d^{\mathfrak{M}}$ are not connected. Therefore $\mathfrak{M}$ is not connected.

[^0]
[^0]:    ${ }^{[1]}$ The reason $\varphi$ cannot be an $\mathscr{L}$-sentence is because $\mathcal{M}$ has no interpretation for $c$ and $d$. Recall an $\mathscr{L}$-sentence may have the symbols $c$ and $d$.

